1、dy/dx=(y^2-2xy)/(x^2-2xy)=[(y/x)^2-2y/x]/(1-2y/x),(1)
设u=y/x,y=ux,
dy/dx=u+xdu/dx,(2)
对比(1)和(2)式,
(u^2-2u)/(1-2u)=u+xdu/dx,
dx/x=(1-2u)du/[3(u^2-u)]
∫dx/x=(-1/3)∫d(u^2-u)/(u^2-u)
lnx=(-1/3)ln(u^2-u)+lnC1,
x=C*(u^2-u)^(-1/3),
x=C*[x^2/(y^2-xy)]^(1/3).
2、y"+5y'=5x^2-2x-1,
常系数齐次线性方程y"+5y'=0的特征方程为:r^2+5r=0,
r1=0,r2=-5/2,
通解:y=C1+C2*e^(-5x/2),
设非齐次方程特解y*=b0x^3+b1x^2+b2x+b3,
y'=3b0x^2+2b1x+b2
y"=6b0x+2b1
6b0x+2b1+15b0x^2+10b1x+5b2=5x^2-2x-1,
15b0=5,
b0=1/3,
6b0+10b1=-2,
10b1=-4,
b1=-2/5,
2b1+5b2=-1,
b2=-1/25,
则通解为:y=C+C2*e^(-5x/2)+x^3/3-2x^2/5-x/25 (C=C1+b3,常数)。