巧算:(1+1⼀2)*(1-1⼀2)*(1+1⼀3)*(1-1⼀3)*......*(1+1⼀99)*(1-1⼀99)

2024-11-27 00:50:26
推荐回答(4个)
回答1:

原式=(1+1/2)(1+1/3)……(1+1/99)(1-1/2)(1-1/3)……(1-1/99)
=(3/2)(4/3)……(100/99)(1/2)(2/3)……(98/99)
=(100/2)(1/99)
=50/99

回答2:

(1+1/2)*(1-1/2)*(1+1/3)*(1-1/3)*......*(1+1/99)(1-1/99)

=(1+1/2)(1+1/3)...(1+1/99)(1-1/2)(1-1/3)...(1-1/99)

=[3/2*4/3...100/99]*[1/2*2/3...98/99]

=100/2*1/99

=50/99

回答3:

原式=1/2*3/2*4/3*2/3*5/4*3/4*6/5*4/5*......每隔两项有一对互为倒数
=1/2*100/99=50/99
最后结果50/99
怎么简单怎么算 加中括号太落后

回答4:

=3/2*1/2*4/3*2/3*5/4*3/4*....*100/99*98/99=1/2*100/99=50/99