c为任意常数
∫(t+2)/(t^2+2t+2)dt
(t+2)/(t^2+2t+2)
= (t+2)/(t+1)^2
let
(t+2)/(t+1)^2 = A/(t+1) + B/(t+1)^2
=>A(t+1) +B = t+2
=> A = 1 , B =1
∫(t+2)/(t^2+2t+2)dt
= ∫ 1/(t+1) dt + ∫ 1/(t+1)^2 dt
= ln|t+1| - 1/(t+1) + C
解:令x=t+1代入∫(t+2)/(t^2+2t+2)dt得
∫(t+2)/(t^2+2t+2)dt= ∫(x+1)/(x^2+1)dx
=∫x/(x^2+1)dx+∫1/(x^2+1)dx
=1/2∫1/(x^2+1)d(x^2+1)+∫1/(x^2+1)dx
=1/2ln(x^2+1)+arctan(x)+C
=1/2ln(t^2+2t+2)+arctan(t+1)+C