数学积分题∫(t+2)⼀(t^2+2t+2)dt,过程详细

2024-12-18 11:00:20
推荐回答(3个)
回答1:

c为任意常数

回答2:

∫(t+2)/(t^2+2t+2)dt
(t+2)/(t^2+2t+2)
= (t+2)/(t+1)^2
let
(t+2)/(t+1)^2 = A/(t+1) + B/(t+1)^2
=>A(t+1) +B = t+2
=> A = 1 , B =1
∫(t+2)/(t^2+2t+2)dt
= ∫ 1/(t+1) dt + ∫ 1/(t+1)^2 dt
= ln|t+1| - 1/(t+1) + C

回答3:

解:令x=t+1代入∫(t+2)/(t^2+2t+2)dt得
∫(t+2)/(t^2+2t+2)dt= ∫(x+1)/(x^2+1)dx
=∫x/(x^2+1)dx+∫1/(x^2+1)dx
=1/2∫1/(x^2+1)d(x^2+1)+∫1/(x^2+1)dx
=1/2ln(x^2+1)+arctan(x)+C
=1/2ln(t^2+2t+2)+arctan(t+1)+C