选D
解:
x^5+x^4+1
=x^5+x^4-x^2-x+(x^2+x+1)
=x^4(x+1)-x(x+1)+(x^2+x+1)
=x(x+1)(x^3-1)+(x^2+x+1)
=x(x+1)(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)[x(x+1)(x-1)+1]
=(x^2+x+1)(x^3-x+1)
x+1)*(x^2+x+1)+1
=x^3+2x^2+2x+2
(x^3+2x^2+4x+3)/(x-1)
商:x^2+3x+7
余:10/(x-1)
D'