离心泵最易发生气蚀的部位有: a.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; b.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; c.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间隙以及叶梢的低压侧; d.多级泵中第一级叶轮。
提高离心泵抗气蚀性能措施
a.提高离心泵本身抗气蚀性能的措施
(1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性越高,化学稳定性越好,抗气蚀的性能越强。
b.提高进液装置有效气蚀余量的措施
(1)增加泵前贮液罐中液面的压力,以提高有效气蚀余量。 (2)减小吸上装置泵的安装高度。 (3)将上吸装置改为倒灌装置。 (4)减小泵前管路上的流动损失。如在要求范围尽量缩短管路,减小管路中的流速,减少弯管和阀门,尽量加大阀门开度等。 以上措施可根据泵的选型、选材和泵的使用现场等条件,进行综合分析,适当加以应用。
由于管道中间空气较多导致汽蚀现象,在管道中的液体需要排气后再开泵运行
汽蚀的定义
离心式水泵都有不同程度的汽蚀现象发生。水泵产生汽蚀除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 既然汽蚀有如此大危害,那么如何杜绝离心式水泵的汽蚀现象发生呢?首选要明确一个概念:什么是汽蚀现象?所谓汽蚀现象就是指液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
汽蚀的影响因素
泵汽蚀基本关系式
泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为
NPSHc≤NPSHr≤[NPSH]≤NPSHa
NPSHa=NPSHr(NPSHc)——泵开始汽蚀
NPSHa>NPSHr(NPSHc)——泵无汽蚀
式中 NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;
QNPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; " J# d: j1 x" P( w+ m
NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; 1 [7 I5 b3 B/ ]( J
[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 % m# F' u$ \, @" k% u s! B) [5 N$ P
装置汽蚀余量的计算 kNPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg
汽蚀的危害
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
汽蚀的防止措施
由上式欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下:
1.防止长时间在大流量下运行;
2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等;
3.减小几何吸上高度hg(或增加几何倒灌高度); 0 C5 p1 ], p. U% N* p# e2 b- h
4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀;
5.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料
6.泵发生汽蚀时,应把流量调小或降速运行;
让泵体内充满液体,出口有放空阀!