英文翻译--高手来吧,高分悬赏哦

2024-12-22 09:43:00
推荐回答(4个)
回答1:

二。混合动力电动汽车电动机动态模型的研究
图。 1显示了永磁同步电动机的基本分析模型。由于极槽比为1.5,与分数槽集中绕组采用组合如图所示。 1(a)条。这也使得人们有可能最大限度地槽填补部分采用定子齿因素。桥梁结构,包括对管道的设计最高速度离心力。该混合动力汽车永磁同步电动机的规格表一所示
三。特征到期撑弧撑间距比
为了尽量减少转矩脉动,相反电动势波形应在无负载正弦波。因此,中小企业市场推广基金由于极弧背撑间距比之前分析的磁负荷的决定。对极弧参数撑间距比指宽的比例极下午角度俯仰角。反电动势波形图清盘是提出阶段。 2(一)根据极弧极间距比率从62.2%到90%。较小的极弧极间距的比例越大,降低反电动势由于每极磁通减少产生。但是,它可以实现在小极弧极间距比正弦反电动势波形。在论文中,如平均转矩和转矩脉动以及备份扭矩性能电磁场是安娜,对于极弧极间距比设计lyzed。图。 2(二)金正日¬ lustrates平均转矩和转矩脉动的分析结果根据极弧极间距的比例。表二显示了每个阶段的总反电势谐波失真(THD)。

电磁场在背总谐波失真最小化在79%极弧极间距的比例。扭矩也平均在79%饱和极弧极间距的比例。然而,在转矩脉动79%极弧极间距比不最小虽然反电动势是最小的总谐波失真在这一点上。这是因为在桥梁构件磁饱和电枢反应发生在不同的地方。转矩波动仅仅意味着最大的差异最小转矩发电。因此,我们可以验证的反电动势总谐波失真并不总是相关的永磁同步电动机转矩脉动。为了集中在低转矩脉动,我们决定在极弧极间距比为73.5%的文件。

图。 3显示的结果相比较的反电动势之间的模拟和实验。对于结果的验证,谐波进行了比较,表三。

回答2:

II。 混合动力汽车研究模型IPMSM
图1显示IPMSM基本分析模型。因为之比为1.5,槽磁极集中绕组采用以分数槽组合,如图1(a)。它也可以最大限度的填充因子运用槽定子段的牙齿。风管包括桥梁结构设计谋害离心力在最快的速度行驶。的使用说明书中注明为混合动力IPMSM表我。
三。由于POLE-ARC特点,POLE-PITCH比率
为了减小转矩脉动的阶段,反电动势波形正弦在不应负荷运转。因此,对反电动势由于pole-arc前pole-pitch比是分析决策的磁性装。pole-arc的参数,并对pole-pitch宽度的比值比手段的角度螺旋角点到极点。反电动势波形相绕组的给出了图2(a)根据pole-arc比率,从pole-pitch 62.2%高达90%以上。pole-arc pole-pitch越小,越低比例是,因为减少反电动势产生磁通每拿到杆位。然而,它可以实现正弦反电动势波形,在一个小小的pole-arc pole-pitch比率。在论文中,扭矩性能平均转矩和转矩脉动以及反电动势的设计是ana-lyzed pole-arc到pole-pitch比率。图2(b)il¬结果的分析lustrates平均转矩和转矩脉动,根据pole-arc pole-pitch比率。 附表二)显示总谐波畸变(容器)每一阶段的反电动势。

反电动势的拉力pole-arc降到最小程度,pole-pitch 79%的比率。平均转矩也是pole-arc饱和的79%,pole-pitch比率。 然而,在79% pole-arc转矩脉动最小,比不pole-pitch虽然脾反电动势是很小的,在这一点上。这是由于磁饱和,在斯坦福桥的组件发生在电枢反应不同。

回答3:

在定子上,突出来的部分叫pole, pole 中间的就是slot,线圈缠绕在pole上 ,所以就有了slot 的fill factor这个概念。(pole 和slot的比例是5:1,我猜你是在看textbook,一句句翻译没什么意思。我需要看看你的图,看看哪里是teeth,理解一下为什么stator segment teeth可以最大化fill factor; 为什么 The duct including bridge 可以在高速时减少离心力。and need to take a look of spec. sheet table)

回答4:

II。混合动力汽车研究模型IPMSM
  图1显示IPMSM基本分析模型。因为之比为1.5,槽磁极集中绕组采用以分数槽组合,如图1(a)。它也可以最大限度的填充因子运用槽定子段的牙齿。风管包括桥梁结构设计谋害离心力在最快的速度行驶。的使用说明书中注明为混合动力IPMSM表我。
  三。由于POLE-ARC特点的T