函数y=sin(2x-π⼀4)的图像的一个对称中心是什么,一条对称轴方程是什么?

2024-12-26 05:45:07
推荐回答(3个)
回答1:

y=sin(2x-π/4)=0
2x-π/4=kπ
x=kπ/2+π/8

y=sin(2x-π/4)=±1
2x-π/4=kπ+π/2
x=kπ/2+3π/8

所以对称中心(kπ/2+π/8,0),对称轴x=kπ/2+3π/8

回答2:

令y=sin(2x-π/4)=0
得2x-π/4=kπ
所以x=kπ/2+π/8(k∈Z)
所以对称中心是(kπ/2+π/8,0)
随便取k=0即得一个对称中心(π/8,0)

令y=sin(2x-π/4)=±1
得2x-π/4=kπ+π/2
所以x=kπ/2+3π/8(k∈Z)
所以对称轴是x=kπ/2+3π/8
随便取k=0即得一个对称轴x=3π/8

回答3:

解:F(x)=y=sin(2x+π/3)cos(x-π/6)+cos(2x+π/3)sin(π/6-x)
=sin(2x+π/3)cos(x-π/6)- cos(2x+π/3)sin(x-π/6)
=sin(2x+π/3-x+π/6)
=sin(x+π/2)
=cosx
令F(x)的图像以x=t为对称轴则:F(t+x)+F(t-x)
即cos(t+x)=cos(t-x) 即sinxsint=0
有由于x为不定变量则sint=0 t=kπ ;k∈Z
故x=t=kπ ;k∈Z都是题中函数的图像的对称轴方程