定理:
设f(x)在[a,b]满足
(1) f(a)·f(b)<0
(2) f(x)∈[a,b],f′(x),f″(x)均存在,且f′(x)与f″( x)的符号均保持不变。
(3) f(x)·f″(x)>0, x∈[a,b] 则方程f(x)=0在[a,b]上有且只有一个实根,由牛顿法迭代公式计算得到的近似解序列{ }收敛于方程 f(x)=0 的根 x*。
由方程f(x)=0得到的牛顿迭代形式:
x=x- =1- = 由于f(x*)=0,所以当f′(x*)≠0时, (x* )= 0,牛顿法至少是二阶收敛的,即牛顿法在单根附近至少是二阶收敛的,在重根附近是线性收敛的。
牛顿法收敛很快,而且可求复根,缺点是对重根收敛较慢,要求函数的一阶导数存在。