因为an=1/n+1+2/n+1+3/n+1+…+n/n+1
所以an=(1+2+3+4+5+....+n)/n+1=(n+1)n/2(n+1)=n/2
所以bn=8/n(n+1) 所以bn=8(1/n-1/n+1)
sn=8(1-1/2+1/2-1/3+.....+1/n-1/n+1)=8(1-1/n+1)=8n/n+1
an=1/(n+1)+...n/(n+1)=n(n+1)/[2(n+1)]=n/2
bn=2/[ana(n+1)]=8/n(n+1)=8[1/n-1/(n+1)]
Sn=8[1/1-1/2+1/2-1/3+......1/n-1/(n+1)]=8[1-1/(n+1)]=8n/(n+1)
bn=2/an乘an+1???
请说仔细..是先乘除还是先加减...