有个解三次方程的软件 http://tool.ourrd.com/tool.asp?cat=53&id=581 在线解决
X1=10.5604246777215;
X2=-0.280212338860741 + 2.41656856756937 i;
X3=-0.280212338860741-2.41656856756937 i
一元三次方程求根公式
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
卡尔丹公式的推导
第一步:
ax^3+bx^2+cx+d=0
为了方便,约去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2项系数是-k ,
k(y-k/3)^2中的y^2项系数是k ,
所以相加后y^2抵消 ,
得到y^3+py+q=0,
其中p=(-k^2/3)+m ,
q=(2(k/3)^3)-(km/3)+n。
第二步:
方程x^3+px+q=0的三个根为:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
×推导过程:
1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ;
2、方程x^3=A的解为x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 ,
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+ax^2+bx+c=0的形式。
再令x=y-a/3,代入可消去次高项,变成x^3+px+q=0的形式。
设x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①,
如果u和v满足uv=-p/3,u^3+v^3=-q则①成立,
由一元二次方程韦达定理u^3和V^3是方程y^2+qy-(p/3)^3=0的两个根。
解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2),
不妨设A=-q/2-((q/2)^2+(p/3)^3)^(1/2),B=-q/2+((q/2)^2+(p/3)^3)^(1/2),
则u^3=A;v^3=B ,
u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ;
v= B^(1/3)或者B^(1/3)ω或者B^(1/3)ω^2 ,
但是考虑到uv=-p/3,所以u、v只有三组解:
u1= A^(1/3),v1= B^(1/3);
u2=A^(1/3)ω,v2=B^(1/3)ω^2;
u3=A^(1/3)ω^2,v3=B^(1/3)ω,
最后:
方程x^3+px+q=0的三个根也出来了,即
x1=u1+v1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。
卡尔丹公式
方程x^3+px+q=0,(p,q∈R)
判别式△=(q/2)^2+(p/3)^3。
x1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。
这就是著名的卡尔丹公式。
卡尔丹判别法
当△=(q/2)^2+(p/3)^3>0时,有一个实根和一对个共轭虚根;
当△=(q/2)^2+(p/3)^3=0时,有三个实根,其中两个相等;
当△=(q/2)^2+(p/3)^3<0时,有三个不相等的实根。
编辑本段
根与系数的关系
设ax^3+bx^2+cx+d=0(a≠0)的三根为x1,x2,x3,则
x1+x2+x3=-b/a;
x1x2+x2x3+x1x3=c/a;
x1x2x3=-d/a。
编辑本段
一个三次方求根计算方法
下面介绍一个三次方求根计算方法:
X(n+1)=Xn+[A/X^2-Xn)1/3
n,n+1是下角标,A被开方数。
例如,A=5,5介于1的3次方至2的3次方之间。X0可以取1.1;1.2;1.3;1.4;1.5;1.6;1.7;1.8;1.9;2.0我们可以随意代入一个数,例如2,那么:
第一步,2+[5/(2×2)-2]×1/3=1.7=X1;
第二步,1.7+[5/(1.7×1.7)-1.7]×1/3=1.71=X2;
第三步,1.71+[5/(1.71×1.71)-1.71]×1/3=1.709=X3;
每次多取一位数。公式会自动反馈到正确的数值。
编辑本段
一元三次方程置换群解法
求出X,Y,后有
这是个线性方程,其中
为原方程的三个根!