已知m^2+m-2=0 求m^3+2m^2-m+1的值

2025-04-14 21:07:35
推荐回答(2个)
回答1:

由m^2+m-2=0,得m^2+m=2
m^3+2m^2-m+1
=m^3+m^2+m^2-m+1
=m(m^2+m)+m^2-m+1
=2m+m^2-m+1
=m^2+m+1
=2+1=3

回答2:

m可能等于1或-2
m=1 m^3+2m^2-m+1=3
m=-2 m^3+2m^2-m+1=3