由m^2+m-2=0,得m^2+m=2m^3+2m^2-m+1=m^3+m^2+m^2-m+1=m(m^2+m)+m^2-m+1=2m+m^2-m+1=m^2+m+1=2+1=3
m可能等于1或-2m=1 m^3+2m^2-m+1=3m=-2 m^3+2m^2-m+1=3