1.∵∠COB=2∠PCB∠COB=2∠A (同弧所对的圆周角是圆心角的一半)∴∠PCB=∠A∵OA=OC∴∠A=∠OCA∴∠OCA=∠PCB又∵AB是直径∴∠ACB=90°,即∠OCA+∠OCB=90°∴∠OCB+∠PCB=90°即OC⊥PC∴PC是⊙O的切线。2.∵AC=PC∴∠A=∠P∵∠A+∠CBO=90°,∠P+∠COB=90°∴∠CBO=∠COB (等角的余角相等)∴CB=OC=AB/2即AB=2BC