一道高中数学三角函数题…

2024-12-15 15:23:33
推荐回答(3个)
回答1:

先整理化简
f(x)=向量mn-1/2=sinwxcoswx+(coswx)^2-1/2=1/2sin2wx+1/2cos2wx=√2/2sin(2wx+π/4)
最小正周期是4兀 ,最小正周期是4兀 ,w=1/4,f(x)=√2/2sin(1/2x+π/4)
(1)当sin(1/2x+π/4)=-1取得最小值-√2/2,此时1/2x+π/4=-π/2+2kπ,x=-3π/2+4kπ
当sin(1/2x+π/4)=1取得最大值√2/2,,此时1/2x+π/4=π/2+2kπ.x=π/2+4kπ
(2)(2a-c)cosB=bcosC
由正弦定理a/sinA=b/sinB=csinC=2R
则(2sinA-sinC)cosB=sinBcosC
2sinAcosB-sinCcosB=sinBcosC
2sinAcosB=sinCcosB+sinBcosC
2sinAcosB=sin(B+C)
2sinAcosB=sin(180-A)
2sinAcosB=sinA
sinA≠0,所以cosB=1/2,B=π/3
A=2π/3-C,0所以1/2

回答2:

1
f(x)=2sinwxcoswx-1/2=sin2wx-1/2
T=2π/2w=4π 2w=1/2 f(x)=sin(x/2)-1/2
x=π+4kπ(k整数),f(x)最大=1-1/2=1/2
x=3π+4kπ(k整数)f(x)最小=-1-1/2=-3/2
2
a/sinA=b/sinB=c/sinC=k
(2a-c)cosB=bcosC
2sinAcosB-sinCcosB=sinBcosC
2sinAcosB=sin(B+C)
2cosB=1
cosB=1/2,B=π/3
f(B)=sin(B/2)-1/2=√3/2 - 1/2
A+C=π-B=2π/3,C>0, 0-1/2-1/2

回答3:

f(x)=sinwxcoswx+(coswx)^2-1/2=1/2*sin2wx+1/2*cos2wx-1=√2/2*sin(2wx+π/4)-1,其最小正周期是2π/(2w)=4π得:w=1/4。f(x)=√2/2*sin(1/2*x+π/4)-1
(1)当sin(1/2*x+π/4)=-1是取得最小值,此时1/2*x+π/4=-π/2+2kπ,x=-3π/2+4kπ,k为整数。
当sin(1/2*x+π/4)=1是取得最大值, 此时1/2*x+π/4=-π/2+2kπ,x=π/2+4kπ,k为整数。
(2)由a/sinA=b/sinB=c/sinC及(2a-c)cosB=bcosC得:2sinB-sinC)cosA-sinAcosC=0。整理得:2sinBcosA=sinAcosC+cosAsinC,即:2sin(A+C)cosA=sin(A+C),求得cosA=1/2,A=60°