初三相似三角形几何证明题

2025-01-07 03:34:45
推荐回答(1个)
回答1:

过点D作DG⊥AC于G,则DG=BD
∴CG^2=CD^2-DG^2=CD^2-BD^2=(CD+BD)(CD-BD)=BC(CD-BD)=BC(2CD-BC)
∴BC^2/CG^2=BC/(2CD-BC)
而由△CDG∽△ABC可得:BC/CG=AC/CD
∴AC^2/CD^2=BC/(2CD-BC)
而由角平分线性质可得:AC/CD=AB/BD
∴AB^2/BD^2=BC/(2CD-BC)
再用比例的性质可得:
AB^2/(BD^2+AB^2)=BC/(2CD-BC+BC)
即:AB^2/AD^2=BC/(2CD)