已知向量a=(√3,-1),b=(1⼀2,√3⼀2),是否存在不等于0的实数k和t,试x=a+(t^2-3)b,y=-ka+tb,且x⊥y?如果

2025-02-23 05:19:54
推荐回答(2个)
回答1:

首先,|a|=2,|b|=1,a*b=0
其次,x⊥y,则x*y=0
x*y=(a+(t^2-3)b)*(-ka+tb)=-k|a|^2+t(t^2-3)|b|^2=-4k+t(t^2-3)=0,所以存在满足-4k+t(t^2-3)=0的实数k,t,使得x⊥y

回答2:

x=a+(t^2-3)b=(√3,-1)+(t^2-3)(1/2,√3/2)
=(√3,-1)+[1/2(t^2-3),√3/2(t^2-3)]
=[√3+1/2(t^2-3),-1+√3/2(t^2-3)]
y=-ka+tb=k(√3,-1)+(1/2,√3/2)=(k√3+1/2,-k+√3/2)
x⊥y √3+1/2(t^2-3)/k√3+1/2=-1+√3/2(t^2-3)]/-k+√3/2)
k=1/(3-t^2)