已知数列{an}中,an=1+2+3+…+n,数列{1⼀an}的前n项和为

2025-01-06 05:24:55
推荐回答(4个)
回答1:

an=1+2+3+…+n=(n+1)n/2
令bn=1/an=2/(n+1)n=2*(1/n-1/(n+1))
Sbn=2*(1/1-1/2+1/2-1/3+1/3-1/4+…+1/(n-1)-1/n+1/n-1/(n+1))
=2*(1-1/(n+1))=2n/(n+1)

回答2:

2-2/(n+1)

回答3:

(n+1)*n\2

回答4:

an=n(n+1)/2
拆项法
1/an=2/n(n+1)=2(1/n-1/(n+1))
Sn=2(1-1/2+1/2-1/3+……+1/n-1/(n+1))
=2n/(n+1)