三角形的所有知识点,包括作图

2024-11-24 13:30:18
推荐回答(2个)
回答1:

三角形知识的实际运用

保明华

三角形知识主要包括三角形内的有关线段,三角形的三边关系,三角形的内角和及多边形的内角和。本文以三角形的边、角关系为例,谈谈其在实际中的应用。

三角形的三边关系是:三角形的任意两边之和大于第三边;三角形的三角关系是:三角形的内角和是180°,任一外角等于和它不相邻的两个内角之和。

例1(山西省中考题)如图1,平面上有A,B,C,D四个村庄,为了解决当地缺水问题,政府准备投资修建一个蓄水池,(不考虑其他因素)请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小。

解析 蓄水池H,应建在四边形ABCD两对角线的交点处才符合要求。

不妨任取一点P,由“三角形的两边之和大于第三边”可推出:PA+PC≥AC PB+PD≥BD

所以PA+PB+PC+PD≥AC+BD

即PA+PB+PC+PD≥HA+HB+HC+HD

所以两条对角线的交点H到四个村庄的距离之和最小。

例2(宁夏回族自治区中考题)一个零件的形状如图2所示,按规定∠A应等于 ,∠B和∠C应分别是32°和21°。检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

解析 要说明零件不符合规格,只要说明按规定的标准,∠CDB≠148°即可。延长BD交AC于点E。∠BDC=∠1+∠C(你知道为什么吗?)∠1=∠A+∠B。即∠BDC=∠A+∠B+∠C=90°+32°+21°=143°≠148°。

所以这个零件不合格。

例3 某工程队准备开挖一条隧道,从缩短工期考虑,自山的两侧同时开挖。为了确保两侧开挖的隧道在同一条直线上,测量人员在如图3的同一高度定出了两个基准点P(可同时看到点A,M,N)和Q,然后在左边定出开挖的方向线AM,为了准确定出右边开挖的方向线BN,测得∠A=25°,∠APQ=120°,如果点A,M,B在同一直线上,那么∠PBN应等于多少度才能确定N点的位置使与点A,M,B在同一条直线上?

解析 因为点A,M,B在同一直线上,若N点也在这条直线上时,则PA,PB和AMNB构成了三角形的三边,∠NBP是该三角形的一个内角,其度数为180°-∠A-∠P=180°-25°-120°=35°。

回答2:

三角形的五心:
1、垂心:三角形三条边上的高交于一点,这点就是三角形垂心。
画法:以三角形ABC为例。先画AB边上的高,分别以A和B为圆心,分别以CA和CB为半径画弧,交于M和N两点,过M和N两点的直线就是AB边上的高线;用同样的方法画出BC边上的高线,这两条高线的交点就是三角形的垂心。
2、重心:三角形三条边上的中线交于一点,这点就是三角形的重心。
画法:以三角形ABC为例。先找AB边的中点,分别以A和B为圆心,分别以大于AB的一半长为半径画弧,交于两点,这两点的连线与AB的交点就是线段AB的中点,这个中点和C点的连线就是AB边上的中线;用同样的方法画出BC边上的中线,这两条中线的交点就是三角形的重心。
重心的性质:三角形的重心到顶点的距离等于到对边的距离的2倍。
3、外心:三角形外接圆的圆心就是三角形的外心。
画法:以三角形ABC为例。先画AB边上的垂直平分线,分别以大于AB的一半长为半径画弧,交于两点,过这两点的直线就是线段AB的垂直平分线;用同样的方法画出BC边的垂直平分线,这两条垂直平分线的交点就是三角形的外心。
外心的性质:三角形的外心到三角形的三个顶点的距离相等。
4、内心:三角形的三个内角的平分线的交点就是三角形的内心。
画法:以三角形ABC为例。先画内角A的平分线,以顶点A为圆心,以任意长为半径画弧交AB边和AC边于M,N两点,再分别以M,N两点为圆心,以大于MN的一半长为半径画弧交于一点,过这点和A点的直线就是内角A的平分线;用同样的方法画出内角B的平分线,这两条平分线的交点就是三角形的内心。
内心的性质:三角形的内心到三角形三条边的距离相等。
5、旁心:三角形相邻两外角的平分线的交点就是三角形的旁心,一个三角形有三个旁心。
画法:参照内心画角平分线的方法。
旁心的性质:三角形的旁心在第三个内角的平分线上。

三角形三条边的关系:
两边之和大于第三边,两边之差小于第三边。

三角形三内角和定理:三角形的内角和等于180°

三角形的外角和等于360°