已知实数x、y满足x^2+y^2小于等于1,则|x+y|+|y+1|+|2y-x-4|的取值范围是多少?

2025-02-24 13:55:52
推荐回答(3个)
回答1:

解:
由已知得,-1≤x、y≤1
所以1+y≥0
2y-x-4<0
所以|x+y|+|y+1|+|2y-x-4|=|x+y|+y+1+4+x-2y=5+|x+y|+x-y
显然,5+|x+y|+x-y≥5+2x≥3
5+|x+y|+x-y≤5+|x|+|y|+x-y≤5+2|x|(或者5+2|y|)≤7
完毕。

回答2:

x^2 + y^2 <= 1

y^2 <= 1 |y| <= 1

|y+1| = y+1
|2y-x-4| = 4+x-2y
原式子整理
s = |x+y| + y+1 + 4+x-2y = |x+y| +x-y+5
① x+y >= 0
s = 5+2x <= 7
② x+y < 0
s = 5-2y >= 3
取值范围 [3,7]

回答3:

显然 1>=x>=-1,1>=y>=-1;
所以y+1>=0,<0;
所以|y+1|=y+1,|2y-x-4|=4-2y+x
|x+y|+|y+1|+|2y-x-4|=|x+y|+y+1+4-2y+x=5-y+x+|x+y|
5=<5-y+x+|x+y|<=5-y+x+|x|+|y|<=9