高中数学常用公式及常用结论
1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系
4.容斥原理
.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式
.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
(2)当a<0时,若 ,则 ,若 ,则 , .
10.一元二次方程的实根分布
依据:若 ,则方程 在区间 内至少有一个实根 .
设 ,则
(1)方程 在区间 内有根的充要条件为 或 ;
(2)方程 在区间 内有根的充要条件为 或 或 或 ;
(3)方程 在区间 内有根的充要条件为 或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间 的子区间 (形如 , , 不同)上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(2)在给定区间 的子区间上含参数的二次不等式 ( 为参数)恒成立的充要条件是 .
(3) 恒成立的充要条件是 或 .
12.真值表
p q 非p p或q p且q
真 真 假 真 真
真 假 假 真 假
假 真 真 真 假
假 假 真 假 假
13.常见结论的否定形式
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个
至多有( )个
小于 不小于 至多有 个
至少有( )个
对所有 ,
成立 存在某 ,
不成立
或
且
对任何 ,
不成立 存在某 ,
成立
且
或
14.四种命题的相互关系
原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p
15.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
16.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
17.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
21.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
.
24.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
25.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
26.互为反函数的两个函数的关系
.
27.若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
28.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
29.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,
或 ,
或 ,
或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
30.分数指数幂
(1) ( ,且 ).
(2) ( ,且 ).
31.根式的性质
(1) .
(2)当 为奇数时, ;
当 为偶数时, .
32.有理指数幂的运算性质
(1) .
(2) .
(3) .
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
( ,且 , ,且 , ).
推论 ( ,且 , ,且 , , ).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1) ;
(2) ;
(3) .
36.设函数 ,记 .若 的定义域为 ,则 ,且 ;若 的值域为 ,则 ,且 .对于 的情形,需要单独检验.
37. 对数换底不等式及其推广
若 , , , ,则函数
(1)当 时,在 和 上 为增函数.
, (2)当 时,在 和 上 为减函数.
推论:设 , , ,且 ,则
(1) .
(2) .
38. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为 ,则对于时间 的总产值 ,有 .
39.数列的同项公式与前n项的和的关系
( 数列 的前n项的和为 ).
40.等差数列的通项公式
;
其前n项和公式为
.
41.等比数列的通项公式
;
其前n项的和公式为
或 .
42.等比差数列 : 的通项公式为
;
其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款 元(贷款 元, 次还清,每期利率为 ).
44.常见三角不等式
(1)若 ,则 .
(2) 若 ,则 .
(3) .
45.同角三角函数的基本关系式
, = , .
46.正弦、余弦的诱导公式
47.和角与差角公式
;
;
.
(平方正弦公式);
.
= (辅助角 所在象限由点 的象限决定, ).
48.二倍角公式
.
.
.
49. 三倍角公式
.
. .
50.三角函数的周期公式
函数 ,x∈R及函数 ,x∈R(A,ω, 为常数,且A≠0,ω>0)的周期 ;函数 , (A,ω, 为常数,且A≠0,ω>0)的周期 .
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1) ( 分别表示a、b、c边上的高).
(2) .
(3) .
54.三角形内角和定理
在△ABC中,有
.
55. 简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1) a•b= b•a (交换律);
(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
59.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
53. a与b的数量积(或内积)
a•b=|a||b|cosθ.
61. a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
63.两向量的夹角公式
(a= ,b= ).
64.平面两点间的距离公式
=
(A ,B ).
65.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
66.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则
( ).
▲№№◆ △←◇ _◇ ▲ △←◇ ̄ _◇ →☆ #←○◎◆
高中数学常用公式及常用结论
1.元素与集合的关系
,.
2.德摩根公式
.
3.包含关系
4.容斥原理
.
5.集合
的子集个数共有
个;真子集有
–1个;非空子集有
–1个;非空的真子集有
–2个.
6.二次函数的解析式的三种形式
(1)一般式
;
(2)顶点式
;
(3)零点式
.
7.解连不等式
常有以下转化形式
.
8.方程
在
上有且只有一个实根,与
不等价,前者是后者的一个必要而不是充分条件.特别地,方程
有且只有一个实根在
内,等价于
,或
且
,或
且
.
9.闭区间上的二次函数的最值
二次函数
在闭区间
上的最值只能在
处及区间的两端点处取得,具体如下:
(1)当a>0时,若
,则
;
,,.
(2)当a0)
(1)
,则
的周期T=a;
(2)
,
或
,
或
,
或
,则
的周期T=2a;
(3)
,则
的周期T=3a;
(4)
且
,则
的周期T=4a;
(5)
,则
的周期T=5a;
(6)
,则
的周期T=6a.
30.分数指数幂
(1)
(
,且
).
(2)
(
,且
).
31.根式的性质
(1)
.
(2)当
为奇数时,;
当
为偶数时,.
32.有理指数幂的运算性质
(1)
.
(2)
.
(3)
.
注:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
33.指数式与对数式的互化式
.
34.对数的换底公式
(
,且
,,且
,).
推论
(
,且
,,且
,,).
35.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则
(1)
;
(2)
;
(3)
.
36.设函数
,记
.若
的定义域为
,则
,且
;若
的值域为
,则
,且
.对于
的情形,需要单独检验.
37.对数换底不等式及其推广
若
,,,,则函数
(1)当
时,在
和
上
为增函数.
,(2)当
时,在
和
上
为减函数.
推论:设
,,,且
,则
(1)
.
(2)
.
38.平均增长率的问题
如果原来产值的基础数为N,平均增长率为
,则对于时间
的总产值
,有
.
39.数列的同项公式与前n项的和的关系
(
数列
的前n项的和为
).
40.等差数列的通项公式
;
其前n项和公式为
.
41.等比数列的通项公式
;
其前n项的和公式为
或
.
42.等比差数列
:的通项公式为
;
其前n项和公式为
.
43.分期付款(按揭贷款)
每次还款
元(贷款
元,次还清,每期利率为
).
44.常见三角不等式
(1)若
,则
.
(2)
若
,则
.
(3)
.
45.同角三角函数的基本关系式
,=
,.
46.正弦、余弦的诱导公式
47.和角与差角公式
;
;
.
(平方正弦公式);
.
=
(辅助角
所在象限由点
的象限决定,).
48.二倍角公式
.
.
.
49.三倍角公式
.
..
50.三角函数的周期公式
函数
,x∈R及函数
,x∈R(A,ω,为常数,且A≠0,ω>0)的周期
;函数
,(A,ω,为常数,且A≠0,ω>0)的周期
.
51.正弦定理
.
52.余弦定理
;
;
.
53.面积定理
(1)
(
分别表示a、b、c边上的高).
(2)
.
(3)
.
54.三角形内角和定理
在△ABC中,有
.
55.简单的三角方程的通解
.
.
.
特别地,有
.
.
.
56.最简单的三角不等式及其解集
.
.
.
.
.
.
57.实数与向量的积的运算律
设λ、μ为实数,那么
(1)
结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;
(3)第二分配律:λ(a+b)=λa+λb.
58.向量的数量积的运算律:
(1)
a•b=
b•a
(交换律);
(2)(
a)•b=
(a•b)=
a•b=
a•(
b);
(3)(a+b)•c=
a
•c
+b•c.
59.平面向量基本定理
如果e1、e
2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
60.向量平行的坐标表示
设a=
,b=
,且b
0,则a
b(b
0)
.
53.a与b的数量积(或内积)
a•b=|a||b|cosθ.
61.a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
62.平面向量的坐标运算
(1)设a=
,b=
,则a+b=
.
(2)设a=
,b=
,则a-b=
.
(3)设A
,B
,则
.
(4)设a=
,则
a=
.
(5)设a=
,b=
,则a•b=
.
63.两向量的夹角公式
(a=
,b=
).
64.平面两点间的距离公式
=
(A
,B
).
65.向量的平行与垂直
设a=
,b=
,且b
0,则
A||b
b=λa
.
a
b(a
0)
a•b=0
.
66.线段的定比分公式
设
,,是线段
的分点,是实数,且
,则
(
).