已知函数f(x)=ln(ax+1)+2x+1-1(x≥0,a>0).(Ⅰ)若f(x)在x=2处取得极值,求a的值;(Ⅱ)求f

2025-02-28 00:13:25
推荐回答(1个)
回答1:

(I)∵f(x)=ln(ax+1)+
2
x+1
-1,∴f′(x)=
a
ax+1
-
2
(x+1)2
=
a(x+1)2?2(ax+1)
(ax+1)(x+1)2
=
ax2+a?2
(ax+1)(x+1)2

由f(x)在x=2处取得极值,得f′(2)=0,即5a-2=0,
a=
2
5

(II)∵f′(x)=
ax2+a?2
(ax+1)(x+1)2
(其中a>0,且x≥0),
若a≥2,x≥0时,得f′(x)>0
即f(x)在[0,+∞)上是增函数,
若0<a<2时,令f′(x)=0,有x=
2?a
a
,或x=-
2?a
a
(舍去)      
         x (0,
2?a
a
2?a
a