(I)∵f(x)=ln(ax+1)+
-1,∴f′(x)=2 x+1
-a ax+1
=2 (x+1)2
=
a(x+1)2?2(ax+1) (ax+1)(x+1)2
ax2+a?2 (ax+1)(x+1)2
由f(x)在x=2处取得极值,得f′(2)=0,即5a-2=0,
∴a=
;2 5
(II)∵f′(x)=
(其中a>0,且x≥0),
ax2+a?2 (ax+1)(x+1)2
若a≥2,x≥0时,得f′(x)>0
即f(x)在[0,+∞)上是增函数,
若0<a<2时,令f′(x)=0,有x=
,或x=-
2?a a
(舍去)
2?a a
x | (0,
|
| (
|