原始题目: 有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是
w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容
量,且价值总和最大。(取自百度百科)
问题简化: 1. 背包可容纳总重量为M
2. 有n个物品,每个重量为m[0]. m[1]. m[2] ......m[i] 对应每个物品的
价值为s[0]. S[1]. S[2]....s[i] (i<=n)
3. 放入第i个物品,比较m[i]和M的大小,不超过M则记录下当前价值s
4. 最终取得最大值s
实现方法:
定义三个浮点型一维数组float m[[n]和s[n]和y[n] 定义float M,float a,b定义int n,j, int i
请输入背包容量大小M:
please input the number of the things:
please input the value of the things:
把输入数据按顺序分别定义到数组中(若可以的话,把m[n]的数据由小到大排序,判断最小值m[0]和M的大小,若m[0]>M,输出error)
创建一个栈(这里的东西不太懂—-—)
将第一个数据压入栈底,定义i=0,把当前的m[i]赋值给a,s[i]赋值给b,把当前i存放进数组y[n],以后在每次比较过程中,都把较大b值所对应的物品数存放进y[n]中
判断a
如此进行一轮循环,直到出现10,此时b为一轮循环的最大值,return b,y[n]
当a+m[++i]>M,从栈中弹出m[i-2],a=a-m[i-2],,当i原本就小于等于2的时候,则清除栈中数据,转12,判断a+m[i]<=M,为真,比较b和b-s[i-2]+s[i],并把较大值赋给b,继续向下比较,这时候就不用压入栈中了,再定义一个j=1
判断a+m[i+j]<=M,为真,比较b和b-s[i-2]+s[i+j]大小,较大值赋给b,为假,从栈中弹出m[i-3],当i原本就小于等于3的时候,则清除栈中数据,转12,判断a+m[i]<=M,为真,比较b和b-s[i-3]+s[i](注意,这个b一直在被赋予最新值),如此进行第一轮循环,用for语句实现,因为下面还有嵌入
此时栈中没有数据,并且,已经把m[0]为栈底的循环计算完毕,现在开始计算m[1]为栈底的循环,在这一循环,忽略掉m[0],所有可能情况已经在8-11计算过
依此往下,直到栈底被压入的是m[n]为止,计算完毕,输出b,并且输出数组y[n]
碰巧帮同学,也是这个问题,希望能帮助你。