方程:1/a+1/b+1/c=1/(a+b+c) 两边同时乘以abc (abc不等于0)
得到:bc+ac+ab=abc/(a+b+c) 两边同时a+b+c
得到:a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=abc
a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=0
而a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=(a+b)(b+c)(a+c)=0
所以:a+b,b+c,c+a中,至少有一个是0
a=b=-c或a=-b=c或-a=b=c