急求!!高中立体几何 异面直线所成角习题

2025-03-28 23:12:06
推荐回答(2个)
回答1:

如图,联结DN交BC于E, N、Q必为DE和AE上的三等分点,且DN=2NE,AQ=2QE。在三角形ADE中,作MN的平行线QH交AD于H。联结PH,MN和PQ所成的角,即HQ和PQ所成角。

联结DQ,DQ必垂直平面ABC,求得DA、DB、DC三条棱与底面ABC的夹角的余弦值:

即Rt△ADQ中,cos∠DAQ = AQ/AD =√3 /3 

在△PCQ中,CQ=√3 /3 ,  PC=1/2 ,cos∠DCQ =√3 /3,余弦定理求得PQ= 1/2

在△PDH中,PD=1/2,DH=5/6 ,∠D=60度,余弦定理求得 PH=√(19/36)

在△AHQ中,已知AH=1/6 ,AQ=√3 /3 ,及角cosA=√3 /3 ,余弦定理求得 HQ= 1/2

在△PQH中,三条边的值已确定,用余弦定理求得

cos∠HQP= -1/8         (∠HQP≈97.18°)

即MN和PQ所成的角的余弦值。

回答2:

他是直角 所以余弦-1