已知tanα,tanβ是方程 x²-3x-3=0的两个根,求

2024-12-28 12:05:27
推荐回答(1个)
回答1:

解答:
因为:tanα,tanβ是方程 x²-3x-3=0的两个根
所以:tanα+tanβ=3,tanαtanβ=-3
所以:tan(α+β)=[tanα+tanβ]/[1-tanαtanβ]=3/4
所以:sin²(α+β)-3sin(α+β)cos(α+β)-3cos²(α+β)
=[sin²(α+β)-3sin(α+β)cos(α+β)-3cos²(α+β)]/[sin²(α+β)+cos²(α+β)]
=[tan²(α+β)-3(α+β)-3]/[tan²(α+β)+1]
=-3