求函数f(x)=5√3cos平方x+√3sin平方x-4sinxcosx(∏⼀4≤x≤7∏⼀24)的最小值,并求其单调区间

请写出详细的过程,谢谢
2024-12-29 02:06:07
推荐回答(1个)
回答1:

f(x)=5*3^0.5*cos^2(x)+3^0.5*sin^2(x)-4*sinx*cosx (pi/4<=x<=7*pi/24) pi=3.14
=5*3^0.5*(1+cos2x)/2+3^0.5*(1-cos2x)/2-2sin2x
=3*3^0.5+2*3^0.5*cos2x-2sin2x
=3*3^0.5-4*sin(2x-pi/3)

递增区间: .2k*pi-pi/2<=2x-pi/3<=2k*pi+pi/2 =>k*pi-pi/12<=x<=k*pi+5*pi/12
递减区间: .2k*pi+pi/2<=2x-pi/3<=2k*pi+3pi/2 =>k*pi+5*pi/12<=x<=k*pi+11*pi/12