已知:abc=1
求:1/(ab+a+1)+1/(bc+b+1)+1/(ac+c+1)
把1/(ab+a+1)这部的1都换成abc
解:=abc/(ab+a+abc)+1/(bc+b+1)+1/(ac+c+1)
化简一下把abc/(ab+a+abc)这部上下除以a
=bc/(b+1+bc)+1/(bc+b+1)+1/(ac+c+1)
=(bc+1)/(b+1+bc)+1/(ac+c+1)
=(bc+abc)/(b+abc+bc)+1/(ac+c+1)
=(c+ac)/(ac+c+1)+1/(ac+c+1)
=(c+ac+1)/(ac+c+1)
=1
不知道可不可以应该算是比较拔高了吧!
荣德基的数学题就好了
随便买一本就好了...何必要那么麻烦捏
自己写