解:两个人下棋,要么平局,要么一个人赢,两个人的得分和为2+0=2或者1+1=2,都是2.即每一盘棋分数为2分.
总共进行了C(n,2)=n(n-1)/2局
那么总分为n(n-1)分(其中n为整数)
因为1980=45×44,其余得分不符合
所以n=45
即所得分数是1980分,有45个选手参加比赛.
2人,比1局(2*1/2=1),2分
3人,比3局(3*2/2=3),6分
4人,比6局(4*3/2=6),12分
5人,比10局(5*4/2=10),20分
……
45人,比990局(45*44/2),1980分
(局数*2=分数,因为每局都会有2分)
所以是1980分,45位选手
所有得分为:n*(n-1)/2*2=n*(n-1)
当n=45,n*(n-1)=45*44=1980
所以,有45人参加比赛,所有得分是1980。
每一局双方得分之和一定是2分
所以所有得分一定是偶数,排除1979,1983
n个人比赛一共有(n-1)+(n-2)+...+1局
(n-1)+(n-2)+...+1=n(n-1)/2
n(n-1)=1984无整数解
所有得分是n(n-1)=1980
n=45
总的盘数为n(n+1)/2,故分数总和为n(n+1),从四个数字中找到符合相邻数字相乘的即可。