一、知识点:
1、数据的收集和整理
2、表的意义:把收集到的数据整理以后制成表格,用来反映情况,分析具体问题,这样的表格叫做统计表。
3、常见统计表的分类:
(1)、单式统计表:只含有一个统计项目的统计表。
(2)、复式统计表:含有2个或2个以上统计项目的统计表。
(3)、百分数统计表:不仅表明各统计项目的具体数量,而且表明数量间的百分比的统计表。
4、统计表的制作步骤和方法。
(1)收集数据、整理数据。
(2)根据资料和制作表要求确定统计表的格式和项目。
(3)根据整理好的数据填表。
(4)填写好总计和合计。
(5)写出制表的名称和制表的时间,必要时注明制表人。
5、条形统计图的意义:用一个单位长度表示一定的数量,根据数量画出长短不一的直条,然后把直条按照一定的顺序排列起来。
6、折线统计图的意义:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连起来。
7、扇形统计图:用一个圆表示总量,用圆中大小不同的扇形表示各部分数量所占的百分比。
8、统计量:包括平均数、众数、中位数。
9、统计平均数的意义:平均数能较好地反映一组数据的整体水平。
10、众数:在一组数据中,出现次数最多的那个数据叫众数。
11、中位数:把收集到的某一对象的有关数据,按大小顺序排列,处于中间位置的那个数据(或中间两个数据的平均数)叫中位数。
12、确定现象与不确定现象的认识a、不确定现象:生活中,有些事的发生是不确定的,一般用“可能发生”来描述。
13、确定现象:生活中,有些事情的发生是确定的。一般用“一定发生”或“不可能发生”来描述。
14、可能性大小的表示:用数字表示“一定能”“不可能”。 “一定能”这种可能性用1来表示,“不可能”用0来表示。
1.圆锥的特征:由2个面围成,一个是底面,一个是曲面(展开后是一个扇形) 只有一条高。
2.圆柱的体积:
公式的推导:利用转化的策略。
把圆柱的底面平均分成16、32、64……无限分割,切开后拼成的物体越来越接近长方体。根据长方体的体积公式推导出圆柱的体积公式。
V=sh(底面积×高)
当然在计算圆柱体积的过程中,还有一些变式。如已知半径、直径、底面周长等。
例如:
已知底面半径是10厘米,高是12厘米,求圆柱的体积。
已知底面直径是4分米,高是8分米,求圆柱的体积。
已知圆柱的底面周长是12.56分米,高5分米,求圆柱的体积。
3.圆锥的体积:
通过操作观察讨论获得:圆锥的体积是与它等底等高的圆柱体积的1/3()圆柱的体积是与它等底等高圆锥体积的3倍。
V=1/3sh
4.关于圆锥的一些拓展提高,将会在下面的学习中遇到。
(1)等底、等高的圆柱体积与圆锥的体积比是3:1