解:x^9+x^6+x^2-3
=(x^9-1)+(x^6-1)+(x^2-1)
=(x^3-1)(x^6+x^3+1)+(x^2-1)(x^4+x^2+1)+(x^2-1)
=(x-1)(x^2+x+1)( x^6+x^3+1)+(x^2-1)(x^4+x^2+2)
=(x-1)(x^2+x+1)( x^6+x^3+1)+(x+1)(x-1)(x^4+x^2+2)
=(x-1)[(x^2+x+1)( x^6+x^3+1)+(x+1)(x^4+x^2+2)]
=(x-1)(x^8+x^7+x^6+2x^5+2x^4+2x^3+2x^2+3x+3)
x^9+x^6+x^2-3=(x^9-1)+(x^6-1)+(x^2-1)
=(x^3-1)( x^6+x^3+1)+(x^3-1)( x^3+1)+ (x+1)(x-1)
=(x-1)(x^2+x+1)( x^6+x^3+1)+(x-1)(x^2+x+1) ( x^3+1)+ (x+1)(x-1)
=(x-1)[(x^2+x+1)( x^6+x^3+1)+(x^2+x+1) ( x^3+1)+ (x-1)]
=(x-1)(x^8+x^7+x^6+2x^5+2x^4+2x^3+2x^2+3x+3)
是