已知等差数列{an},若an=8-2n(1)求数列{|an|}的前n项和为Tn(2)设bn=2an,求证:数列{bn+1}不是等比

2025-02-23 17:39:00
推荐回答(1个)
回答1:

(1)由an=8-2n,
得a1=6,d=an-an-1=8-2n-[8-2(n-1)]=-2(n≥2).
再由an=8-2n≥0,得n≤4.
∴等差数列{an}的前4项大于等于0,从第5项起小于0.
则当n≤4时,数列{|an|}的前n项和
Tn=na1+
n(n?1)d
2
=6n+
n(n?1)(?2)
2
=7n-n2
当n>4时,数列{|an|}的前n项和
Tn=|a1|+|a2|+…+|an|
=a1+a2+a3+a4-a5-a6-…-an
=-(a1+a2+…+an)+2(a1+a2+a3+a4
=?
(6+8?2n)?n
2
+2[4×6+6×(?2)]
=n2-7n+24.
综上,Tn
7n?n2         (n≤4)
n2?7n+24  (n>4)

(2)由bn2an28?2n,得bn+1=28?2n+1
bn+1
bn?1+1
28?2n+1
28?2(n?1)+1
=
28?2n+1
210?2n+1
(n≥2).
当n=2时,
28?2n+1
210?2n+1
=
17
65

当n=3时,
28?2n+1
210?2n+1
=
5
17

∴数列{bn+1}不是等比数列.