解:∵tanα=3
∴sinα=3cosα..........(1)
==>(3cosα)²+(cosα)²=1
==>cos²α=1/10..........(2)
故(1)(4sinα-2cosα)/(5cosα+3sinα)
=(4(3cosα)-2cosα)/(5cosα+3(3cosα)) (由(1)得)
=(10cosα)/(14cosα)
=5/7;
(2)sinαcosα
=(3cosα)cosα (由(1)得)
=3cos²α
=3*(1/10) (由(2)得)
=3/10;
(3)(sinα+cosα)²
=sin²α+2sinαcosα+cos²α
=1+2*(3/10) (由(2)题得)
=8/5。
l