解:设x^2-xy+y^2=p
∵x^2+xy+y^2=1
∴可知x^2+y^2=(1+p)/2
2xy=(1-p)
∵x^2+y^2≥2|xy|
∴(1+p)/2≥│(1-p)│
∴1/3≤p≤3
∴x^2-xy+y^2∈[1/3,3]
望采纳!!!
x^2-xy+y^2=x^2+xy+y^2-2xy=1-2xy
x^2+xy+y^2=1 ≥3xy
xy ≤1/3
-2xy≥-2/3,
x^2-xy+y^2=x^2+xy+y^2-2xy=1-2xy≥1/3
当且仅当 x=y时取等号
x^2-xy+y^2=x^2+xy+y^2-3xy=1-3xy
x^2+xy+y^2=1
xy=1-x^2-y^2
x^2+y^2=1-xy
因为x^2+y^2≥2xy
所以x^2+y^2=1-xy≥2xy
1-3xy≥0
x^2-xy+y^2的取值范围为x^2-xy+y^2≥0
领a=x^2+y^2,b=xy
则a>=2b
1=x^2+xy+y^2=a+b>=3b
b<=1/3
x^2-xy+y^2=a-b>=2b-b=b=1/3
这题目有必要一定要用换元吗?
设x+y=a xy=b,于是有a²≥4b
那么x^2+xy+y^2=a²-b=1,a²=1+b
1+b≥4b,b≤1/3
x^2-xy+y^2=a²-3b=1-2b≥1/3
x^2+xy+y^2=1可以得出
(x+y)^2=1+xy--------------1式;
(x-y)^2=1-3xy;
可以得出1/3>=xy>=-1-----2式
x^2-xy+y^2=(x+y)^2-3xy=1-2xy(注意将1式和2式代入)
1-2xy的范围就是[1/3,3]
哈哈,希望有所帮助