因为总体X服从泊松分布,所以E(X)=λ,即 u1=E(X)=λ因此有 λ=1/n*(X1+X2+...+Xn)=X拔 即X的平均数所以λ的矩估计量为 λ上面一个尖号=X拔由最值原理,如果最值存在,此方程组求得的驻点即为所求的最值点,就可以很到参数的极大似然估计。
极大似然估计法一般属于这种情况,所以可以直接按上述步骤求极大似然估计。
如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。
如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
扩展资料:
用样本矩作为相应的总体矩估计来求出估计量的方法.其思想是:如果总体中有 K个未知参数,可以用前 K阶样本矩估计相应的前k阶总体矩,然后利用未知参数与总体矩的函数关系,求出参数的估计量。
矩有一阶矩、二阶矩、以后统称高阶矩,最常用的有一阶和二阶矩。一阶矩又叫静矩,是对函数与自变量的积xf(x)的积分(连续函数)或求和(离散函数)。力学中用以表示f(x)分布力到某点的合力矩,几何上可以用来计算重心,统计学中叫做数学期望(均值)。另外在统计学中还有二阶中心矩(方差)。
参考着资料来源:百度百科-矩估计