已知培简x>ln(1+x),1>销辩ln(1+1)1/2>ln(1+1/2)1/3>ln(1+1/3).......1/n>>亏中缺ln(1+1/n)累加得1+1/2+1/3+...+1/n>ln2+ln(3/2)+ln(4/3)+...+ln(1+1/n)=ln(2×3/2×4/3×...×(1+n)/n)=ln(n+1)
易知lnn0)=0得ln(x+1)