1/n(n+1)=[(n+1)-n]/n(n+1)=(n+1)/n(n+1)-n/n(n+1)=1/n-1/(n+1)所以原式=1-1/2+1/2-1/3+……+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
倾斜角为π/4k=tanπ/4=1则-(2a2-7a+3)/(a2-9)=1且a2-9≠0-(2a-1)(a-3)/(a+3)(a-3)=1-(2a-1)/(a+3)=11-2a=a+3a=-2/3