根据高斯公式
原式=∫∫∫(Ω)(2x+2y+2z)dxdydz
=2∫(0→1)dx∫(0→1-x)dy∫(0→1-x-y)(x+y+z)dz
=∫(0→1)dx∫(0→1-x)[1-(x+y)²]dy
=∫(0→1)(2/3-x+1/3x³)dx
=1/4
高斯定理
反映了静电场是有源场这一特性。
高斯定理是从库仑定律直接导出的,它完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。
为啥就能看出来最上面那个式子=0呀?
同问为什么被积函数为z^2