(1)a1=0,a2=
=1+0 3-0
,a3=1 3
=1+
1 3 3-
1 3
,1 2
a4=
,a5=3 5
,…2 3
观察并归纳出这个数列的通项公式an=
.n-1 n+1
(2)设存在不等于零的常数p,使{
}是等差数列,1
an+p
则
=1
an+1+p
+d,1
an+p
而
=1
an+1+p
=1
+p1+an
3-an
,3-a n
(1-p)a n+(3p+1)
+d=1
an+p
,da n+(1+pd) a n+p
∴
=3-a n
(1-p)a n+(3p+1)
,da n+(1+pd) a n+p
化简得:(1+d-pd)an2+(d-2+4pd-p2d)an+(1+pd+3p2d)=0,
因为上式是关于变量an的恒等式,
∴
1+d-pd=0 d-2+4pd-p 2d=0 1+pd+3p 2d=0
解得:
,
p=-1 d=-
1 2
∴存在不等于零的常数p=-1,使{
}是等差数列,且公差为-1
an+p
.1 2