(1)根据正弦定理,2bcosC=2a-c可化为2sinBcosC=2sinA-sinC,即2sinBcosC=2sin(B+C)-sinC整理得2sinCcosB=sinC,即cosB= 1 2 ,B= π 3 .(2)∵S= 1 2 acsinB= 3 ,∴ac=4,∵a+c=4,∴a=c=2,∵B= π 3 ,∴△ABC为等边三角形,∴b=2.