令 F(x1, y1, x2, y2, z1, z2, u, v) = (x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2 - u (2 + x1^2 + y1^2 - z1^2) - v (-1 + x2 - 2 y2 + 3 z2)。
根据题目条件,z1>0的实数解:
分别为 -(1/Sqrt[2]), Sqrt[2], 1/14 (1 - 9 Sqrt[2]), 1/7 (-1 + 9 Sqrt[2]), 3/Sqrt[2], 3/14 (1 + 5 Sqrt[2]), 1/14 (-4 + Sqrt[ 2]), 1/7 (1 - 2 Sqrt[2]),此时,(x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2 = 1/14 (9 - 4 Sqrt[2]),所以最近距离是 (2sqrt(2) - 1)/sqrt(14)。
联立方程式
Fλ = g(x, y) = 0
Fx = fx (x, y) + λgx (x, y) = 0
Fy = fy (x, y) + λgy (x, y) = 0
求得的解 (x, y) 就成为极值的候补。
这样求极值的方法就叫做拉格朗日乘数法、λ叫做拉格朗日乘数。
简单粗暴地:
令 F(x1, y1, x2, y2, z1, z2, u, v) = (x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2 - u (2 + x1^2 + y1^2 - z1^2) - v (-1 + x2 - 2 y2 + 3 z2)
求对各个未知数的偏导数,确定8元方程组
-2 u x1 + 2 (x1 - x2) == 0,
-2 u y1 + 2 (y1 - y2) == 0,
-v - 2 (x1 - x2) == 0,
2 v - 2 (y1 - y2) == 0,
2 u z1 + 2 (z1 - z2) == 0,
-3 v - 2 (z1 - z2) == 0,
-2 - x1^2 - y1^2 + z1^2 == 0,
1 - x2 + 2 y2 - 3 z2 == 0
根据题目条件,z1>0的实数解:
x1, y1, x2, y2, z1, z2, u, v
分别为 -(1/Sqrt[2]), Sqrt[2], 1/14 (1 - 9 Sqrt[2]), 1/7 (-1 + 9 Sqrt[2]), 3/Sqrt[2], 3/14 (1 + 5 Sqrt[2]), 1/14 (-4 + Sqrt[ 2]), 1/7 (1 - 2 Sqrt[2])
此时,(x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2 = 1/14 (9 - 4 Sqrt[2])
所以最近距离是 (2sqrt(2) - 1)/sqrt(14)