用缩放法证明:1+1⼀2^1⼀2+1⼀3^1⼀2+.......1⼀n^1⼀2<2n^1⼀2

2024-12-26 05:35:45
推荐回答(1个)
回答1:

1+1/(√2)+1/(√3)+……+1/(√n)
=2[1/2+1/(2√2)+1/(2√3)+……+1/(2√n)]
<2{1/[(√1)+0] + 1/[(√2)+(√1)] + 1/[(√3)+(√2)]+……+ 1/[(√n)+(√n-1)]}
=2[1+(√2)-1+(√3)-(√2)+……+(√n)-(√n-1)]
=2√n