[1*2+1⼀(3*4)]+[2*3+1⼀4*5]+[3*4+1⼀5*6].......+[7*8+1⼀9*10]

2024-12-15 20:27:43
推荐回答(3个)
回答1:

1/n(n+1)=1/n-1/(n+1),n*(n+1)=n²+n
原式
=(1²+1+2²+2+3²+3+4²+4+5²+5+6²+6+7²+7)+(1/3-1/4+1/4-1/5+........+1/8-1/9+1/9-1/10)
=140+28+1/3-1/10 =168+7/30
n²前n项和=n(n+1)(2n+1)/6

回答2:

原式=(1-1/2+1/3-1/4)+(1/2-1/3+1/4-1/5)+。。。。+(1/7-1/8+1/9-1/10)=(1+1/2+。。。+1/7)-(1/2+1/3+。。。+1/8)+(1/3+1/4+。。+1/9)-(1/4+1/5+。。。1/10)=1-1/8+1/3-1/10=53/120

回答3:

1*2+3*4+~+7*8+1/3*4+1/4*5+~+1/9*10=1*1+2*2+~+7*7+1+2+~+7+1/3-1/4+~-1/10=140+28+1/3-1/10=168+7/30