(1)当n=1时,a1=S1=1+1+1=3,
a2=S2-S1=4,a3=S3-S2=6,
a4=S4-S3=8,
a5=S5-S4=10.
(2)数列{an}不是等差数列,
∵a2-a1=4-3=1,a3-a2=6-4=2,
∴a2-a1≠a3-a2,
故数列{an}不是等差数列.
(3)∵Sn=n2+n+1,
∴当n≥2时,an=Sn-Sn-1=n2+n+1-[(n-1)2+(n-1)+1]=2n,
当n=1时,a1=S1=1+1+1=3不满足an,
∴{an}的通项公式为an=
.
3,n=1 2n, n≥2