1⼀(1+cosx)的不定积分

2025-04-13 19:12:11
推荐回答(2个)
回答1:

^1/(1+cosx)的积分算法如下:

1+cosx=2[cos(x/2)]^2

1/(1+cosx)=0.5[sec(x/2)]^2

∫dudx/(1+cosx)

=∫0.5[sec(x/2)]^2dx

=∫[sec(x/2)]^2d0.5x

=∫dtan(x/2)

=tan(x/2)+c

 扩展资料:

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。

因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

回答2:

简单计算一下即可,答案如图所示