八年级上学期期末数学模拟试卷
命题人:福景外国语学校 徐玲
班级___________姓名________________座号_________成绩______________
一、填空题(每空1分,共20分):
1、5的平方根是_____,32的算术平方根是_____,-8的立方根是_____。
2、化简:(1) (2) ,(3) = ______。
3、如图1所示,图形①经
过_______变化成图形②,图
形②经过______变化成图形③,
图形③经过________变化成图形④。
4、用两个一样三角尺(含30°角的那个),能拼出______种平行四边形。
5、估算:(1) ≈_____(误差小于1)
6、已知:四边形ABCD中,AB=CD,要使四边形ABCD为平行四边形,需要增加__________。(只需填一个你认为正确的条件即可)
7.一个多边形的内角和比外角和的3倍多1800,则它的
边数是___________.
8,.某种大米的单价是2.4元/千克,当购买x千克大米时,花费为y元,则x与y的函数关系式是
9..如图直线L一次函数y=kx+b的图象,
则b= ,k=
10..若 ,则x= ;y= 。
11..调查某车间在一天中加工零件的情况如下:有2人加工18个零件,有1人每人加工14个零件,有4人每人加工11个零件,有1人加工15个零件.根据上述数据,这组数据的平均数为________ ,这组数据的众数为__________,中位数是__________ 。
二.选择题(每小题2分,共20分):
12. 如图4是我校的长方形水泥操场,如果一学生要
从A角走到C角,至少走( )
A.140米 B.120米 C.100米 D.90米
13、下列说法中,正确的有( )
①无限小数都是无理数; ②无理数都是无理限小数;
③带根号的数都是无理数; ④-2是4的一个平方根。
A. ①③ B. ①②③ C. ③④ D. ②④
14、如图5,已知点O是正三角形ABC三条高的交点,
现将⊿AOB绕点O至少要旋转几度后与⊿BOC重合。( )
A. 60° B. 120° C. 240° D. 360°
15、和数轴上的点成一一对应关系的数是( )
A.自然数 B.有理数 C.无理数 D. 实数
16、如图6所示,在 ABCD中,E、F分别AB、CD的中点,连结DE、EF、BF,则图中平行四边形共有( )
A.2个 B.4个 C.6个 D.8个
17.点M(-3,4)离原点的距离是( )单位长度.
A. 3 B. 4 C. 5 D. 7.
18.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是( )
A.12 B.15 C.13.5 D.14
三、化简(每小题3分,共20分):
19. 20.
21. 用作图象的方法解方程组:
四、解答题(每题5分,共30分)
22 经过平移, 的边AB移到了EF,作出平移后的三角形,你能给出几种作法?
23. 如图,在□ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°AC=2,求BD的长。
A D
O
B C
24.已知:如图,正方形ABCD中,点E,F分别是AD,BC的中点。
(1)△ABE≌△CDF吗? (2)四边形BFDE是平行四边形吗?
A E D
B F C
25.点P1是P(-3,5)关于x轴的对称点,且一次函数过P1和A(1,-2),
求此一次函数的表达式,并画出此一次函数的图像。
26.我校八年级实行小班教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室。问这个学校共有教室多少间?八年级共有多少人?
27.小靓家最近购买了一套住房。准备在装修时用木质地板铺设居室。用瓷砖铺设客厅。经市场调查得知:用这两种材料铺设地面的工钱不一样,小靓根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图所示,请你根据图中所提供的信息,解答下列问题
(1)预算中铺设居室的费用为_____元/m?,铺设客厅的费用为____元/m?;
(2)表设铺设居室的费用y元与面积x(m?)之间的函数关系式为_______。表示铺设客厅的费用y(元)与面积x(m?)之间的关系式为_________。
(3)已知在小靓的预算中。铺设1m?的瓷砖比铺设木质地板的工钱多5元;购买1m?的瓷砖是购买1m?木质地板费用的3/4。那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?
居室
客厅
答案
一 1) ; 3; -2
2) (1)3 (2)5 (3)
3)轴对称 平移 旋转
4)3种
5)4或5
6)AB‖CD或AD=BC等
7)9边
8)y=2.4x(x≥0)
9)3;-
10)1;-1
11)14.1;14;14
二
12)C;13)D 14)B 15)D
16)B 17)C 18)D
三
19)1- 20)
21)
22)3种
23)2
24)略
25)y= x-
26)21间;480人
27)135;110;
y=135x;y=110x
地板的手工钱:15元/㎡;瓷砖的手工钱:20元/㎡
地板的材料费:120元/㎡;瓷砖的材料费:90元/㎡
八年级上学期数学期末复习题
一、细心填一填
足彩胜负 05021 期 开奖结果
开奖日期:2005-05-23 兑奖截止日期:2005-06-20
亚特兰 卡利亚 切 沃 拉齐奥 利沃诺 布雷西 帕尔玛 桑普多 斯图加 纽伦堡 凯泽斯 比勒菲 多 特 弗赖堡
0 1 3 1 1 3 1 0 0 0 0 0 3 0
1.观察中国足球彩票胜负
彩05021期开奖公告,回
答问题:在本期开奖结
果中(针对数字)“1”出
现的频数是 “0”
出现的频率是 .
2.某校八年级(5)班60
名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是 度;表示良好的扇形圆心角是120°,则良好的学生有 人.
3.下赶岗女工张嫂再就业做快餐盒饭的小生意,前5天销售情况如下:第一天50盒,第二天62盒,第一天57盒,第一天70盒,第一天78盒.要清楚地反映盒饭的前5天销售情况,应选择制作 统计图.
4.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 。
5.下图是小明画出的雨季某地某星期降雨量的条形图.
(1)这个星期的总降雨量约有 mm;
(2)如果日降雨量在25毫米以上为大雨,那么这个星期哪几天在下大雨? .
6.有100名学生参加两次科技知识测试.条形图显示两次测试的分数分布情况.请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上);
(1)两次测试最低分在第 次测试中;(2)第 次测试较容易;
7.一组数据经整理后分成四组,第一、二、三小组的频率分别为0.1,0.3,,0.4,第一小组的频数是5,那么第四小组的频率是 ,这组数据共有 个.
8.一个容量为20的样本数据分组后,组距与频数如下:10< ≤20,2;20< ≤30,3;30< ≤40,4;40< ≤50,5;50< ≤60,4;60< ≤70,2.则样本在10< ≤50上的频率是( )
A. 0.20 B. 0.25 C. 0.50 D. 0.70
二、精心选一选
1.下列各数中可以用来表示频率的是( )(A)-0.1(B)1.2 (C)0.4(D)
2.扇形统计图中扇形占圆的30%,则此时扇形所对的圆心角为( )
(A)120° (B)108° (C)90° (D)60°
3.将100个数据分成8个
组,如下表:则第六组的
频数为( )
(A)12 (B)13 (C)14 (D)15
4.甲校女生占全校总人数的50%,乙校男生占全校总人数的50%,比较两校女生人数( )
(A)甲校多于乙校 (B)甲校与乙校一样多(C) 甲校多于乙校 (D) 不确定
5.下图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )
(A)180万 (B)200万 (C)300万 (D)400万
6.已知一组数据63、65、67、
69、66、64、66、64、65、68,在64.5~66.5之间的数据出现的频率是( ) (A)0.4 (B)0.5 (C)5 (D)4
7.2005年第一季度,钢铁及新材料、轿车等机械制造、烟草及食品、光电子信息、石化、环保等十大行业的快速发展,带动了武汉市国民经济的快速增长.其中,规模居前的6个行业第一季度的生产规模占这十大行业同期生产总规模的百分比依次是27%、18%、10%、16%、9%、6.25%(如图).
已知环保第一季度的生产规模约27亿元,则此次统计中第一季度十大行业生产总规模及其中规模超过40亿元的行业个数分别为( )
(A)约432亿元,3 (B)约432亿元,4
(C)约372.6亿元,3 (D)约372.6亿元,4
8.如图是小刚一天中的作息时间分配的扇形
统计图.如果小刚希望把自己每天的阅读时间
调整为2时,那么他的阅读时间需增加( )
(A)15分.(B)48分.(C)60分.(D)105分.
三、认真答一答
1.图①、②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.
(1)两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地比
较每个年级男女生的人数?
(2)请按该校各年级学生人数在图③中画出扇形统计图.
2.中国足球甲级联赛于2005年6月11日结束了上半程的最后一轮比赛,积分榜如下表。请你根据表中提供的信息,解答下面问题:
(1)补全图中的条形统计图;
(2)十四支甲级队在联赛中失球最少是哪个队?负的场次最多的是哪个队?
(3)进球数20个以上(含20个)的球队占参赛球队的百分数为多少(精确到1%)?
名次 队名 场次 胜 平 负 进球 失球 净胜球 积分
1 厦门蓝狮 13 10 2 1 26 8 18 32
2 长春亚泰 13 8 4 1 36 12 24 28
3 广州日之泉 13 7 4 2 22 6 16 25
4 江苏舜天 13 6 6 1 20 10 10 24
5 浙江巴贝绿城 13 7 2 4 20 12 8 23
6 青岛海信 13 6 4 3 16 14 2 22
7 河南建业 13 4 5 4 14 15 -1 17
8 延边 13 5 1 7 22 19 3 16
9 上海九城 13 3 6 4 21 18 3 15
10 南京有有 13 3 6 4 20 18 2 15
11 成都五牛 13 4 1 8 20 30 -10 13
12 湖南湘军 13 3 2 8 10 25 -15 11
13 大连长波 13 3 1 9 9 30 -21 10
14 哈尔滨国力 13 0 0 13 0 39 -39 0
3.甲、乙两人在某公司做见习推销员,推销“小天鹅”洗衣机,
他们在1~8月份的销售情况如下表所示:
月份 甲的销售量
(单位:台) 乙的销售量
(单位:台)
1月 7 5
2月 8 6
3月 6 5
4月 7 6
5月 6 7
6月 6 7
7月 7 8
8月 7 9
(1)在上边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)
(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息. ① ;
② .
4. (本题满分10分)为了了解学校开展“孝敬父母,从家务做起”活动的实施情况。该校抽取初二年级50名学生,调查他们一周(按七天计算)做家
务所用的时间(单位:小时),得到一组数据,并绘制成下表。请
分组 频数累计 频数 频率
0.55~1.05 正正 14 0.28
1.05~1.55 正正正 15 0.30
1.55~2.05 正 7
2.05~2.55 4 0.08
2.55~3.05 正 5 0.10
3.05~3.55 3
3.55~4.05 0.04
合计 50 50 1.00
根据该表回答下列各题:
(1)将频数分布表补充完整.
(2)由以上信息判断,每周做家务的时间
不超过1.5小时的学生所占的百分比.
(3)作出反映调查结果的统计图
(4)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.
四、解答题:
1.如图,四边形ABCD中,点E在边CD上,连结AE、BE.给出下列五个关系式:①AD‖BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.
(1)用序号写出一个真命题(书写形式如:如果×××,
那么××),并给出证明:
(2)用序号再写出三个真命题(不要求证明);
(3)加分题:真命题不止以上四个,想一想,就能够多
写出几个真命题,每多写出一个真命题就给你加1分,
最多加2分.
一、仔细选一选。
1.下列运算中,正确的是()
A、x3•x3=x6B、3x2÷2x=xC、(x2)3=x5D、(x+y2)2=x2+y4
2.下列图案中是轴对称图形的是()
3.下列各式由左边到右边的变形中,是分解因式的为()
A、a(x+y)=ax+ay B、x2-4x+4=x(x-4)+4
C、10x2-5x=5x(2x-1) D、x2-16+3x=(x-4)(x+4)+3x
4.下列说法正确的是()
A、0.25是0.5的一个平方根B、负数有一个平方根
C、72的平方根是7D、正数有两个平方根,且这两个平方根之和等于0
5.下列各曲线中不能表示y是x的函数的是()
6.如图, 四点在一条直线上, 再添一个条件仍不能证明⊿ABC≌⊿DEF的是()
A.AB=DE B..DF∥AC
C.∠E=∠ABC D.AB∥DE
7.已知 , ,则 的值为()
A、9 B、 C、12 D、
8.已知正比例函数 (k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()
9、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()
10.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为()
A、14B、18C、24D、18或24
11.在实数 中,无理数的个数是()
A.1 B.2 C.3 D.4
12.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1
13.如果单项式 与 x3ya+b是同类项,那么这两个单项式的积是()
A.x6y4 B.-x3y2 C.- x3y2 D.-x6y4
14.计算(-3a3)2÷a2的结果是()
A.9a4 B.-9a4 C.6a4 D.9a3
15.若m+n=7,mn=12,则m2-mn+n2的值是()
A.11 B.13 C.37 D.61
16.下列各式是完全平方式的是()
A.x2-x+ B.1+x2 C.x+xy+l D.x2+2a-l
17.一次函数y=mx-n的图象如图所示,则下面结论正确的是()
A.m<0,n<0 B.m<0,n>0C.m>0,n>0 D.m>0,n<0
18.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是()
A.310元B.300元
C.290元 D.280元
19.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为()
A.b=3,c=-1 B.b=-6,c=2
C.b=-6,c=-4 D.b=-4,c=-6
20.函数y= 中自变量x的取值范围是()
A.x≥2 B.x≠1 C.x>-2且x≠1 D.x≥-2且x≠1
21.直线y=-2x+a经过(3,y1,)和(-2,y2),则y1与y2的大小关系是()
A.y1>y2 B.y1
1.若a4•ay=a19,则y=_____________.
2.计算:( )2008×(- )2009×(-1)2007=_____________.
3.若多项式x2+mx+9恰好是另一个多项式的平方,则m=_____________.
4.已知: ,则x+y的算术平方根为_____________.
5.已知点A(-2,4),则点A关于y轴对称的点的坐标为_____________.
6.周长为10cm的等腰三角形,腰长Y(cm)与底边长x(cm)之间的函数关系式是_____________.
7.将直线y=4x+1的图象向下平移3个单位长度,得到直线_____________.
8.已知a+ =3,则a2+ 的值是______________.
9.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_____________.
10.已知直线y=x-3与y=2x+2的妄点为(-5,-8),则方程组 的解是_________.
11.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____________.
12.观察下列单项式:
x,-2x2,4x3,-8x4,16x5,……
根据你发现的规律写出第10个单项式为_____________,第n个单项式为_____________.
13.三角形的三条边长分别是3cm、5cm、xcm,则此三角形的周长y(cm)与x(cm)的函数关系是。
14.若x、y都是实数,且 ,则x+3y的立方根为。
三、认真解答。一定要细心哟!
1.计算:
(1) (2)[(-3x2y4)2x3-2x(3x2y2)3 y2]÷9x7y8
(3)[(x+2y)2-(x+y)(x-y)-4y2]÷2y
2.将下列各式分解因式
(1)3x-12x3(2)(x2+y2)2-4x2y2
3.先化简,再求值:已知:a2+b2+2a一4b+5=0求:3a2+4b-3的值。
4.先化简,再求值: ,其中 。
5.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;
6.已知y=y1+y2,y1与x-1成正比,y2与x成正比,当x=2时,y=4,当x=-1,y=-5,求y与x的函数解析式。
(1)若B、C在DE的同侧(如图一所示)且AD=CE求证:AB⊥AC
(2)若B、C在DE的两侧(如图二所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由。
7.某校准备为学生制作一批新年纪念册,甲公司提出:每册收材料费5元,另收设计费1200元;乙公司提出;每册收材料费8元,并按9折优惠,不收设计费。
(1)请写出甲公司的收费y1与制作纪念册的数量x的函数关系式;
(2)请写出乙公司的收费y2与制作纪念册的数量x的函数关系式;
(3)如果该校有学生580人,你认为选择哪家公司比较便宜.
8.直线y=kx+b过点A(-1,5)且平行于直线y=-x。
(1)求这条直线的解析式;(2)求△AOB的面积.
(3)若点B(m,-5)在达条直线上,O为坐标原点,求m的值;
9.作图题(不写作图步骤,保留作图痕迹).
如图,OM,ON是两条公路,A,B是两个工厂,现欲建一个仓库P,使其到两条公路距离相等且到两工厂距离相等,请你确定该仓库P的位置。
10、如图,直线 与 相交于点P, 的函数表达式y=2x+3,点P的横坐标为-1
,且 交y轴于点A(0,1).求直线 的函数表达式.
11.如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.
12.先阅读下列的解答过程,然后再解答:
形如 的化简,只要我们找到两个数a、b,使 , ,使得 , ,那么便有:
例如:化简
解:首先把 化为 ,这里 , ,由于4+3=7,
即 ,
∴ = =
仿照上述例题的方法化简: ;
13、新华文具店的某种毛笔每支售价2.5元,书法练习本每本售价0.5元,该文具店为促销制定了两种优惠办法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款。
实验中学欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本。
(1)请写出用甲种优惠办法实际付款金额y甲(元)与x(本)之间的函数关系式;
(2)请写出用乙种优惠办法实际付款金额y乙(元)与x(本)之间的函数关系式;
(3)请你分析,选择哪种优惠方法付款更省钱
14、探索题:
......①试求 的值
②判断 的值的个位数是几?
2010-2011学年度第一学期八年级数学期末试卷(二)
一、选一选,比比谁细心
1.计算 的结果是( )
A.2B.±2C.-2D.4
2.计算 的结果是()
A. B. C. D.
3.若式子 在实数范围内有意义,则x的取值范围是()
A.x>5 B.x≥5 C.x≠5 D.x≥0
4.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()
A.∠D=∠C,∠BAD=∠ABC
B.∠BAD=∠ABC,∠ABD=∠BAC
C.BD=AC,∠BAD=∠ABC
D.AD=BC,BD=AC
5.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFE+∠BCD=280°,则∠AFC+∠BCF的大小是( )
A.80° B.140°
C.160°D.180°
6.下列图象中,以方程 的解为坐标的点组成的图象是()
7.任意给定一个非零实数,按下列程序计算,最后输出的结果是()
A. B. C. D.
8.已知一次函数 的图象如图所示,那么 的取值范围是()
A. B.
C. D.
9.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()
A. B. C.5 D.4
10.如图,是某工程队在“村村通”工程中修筑的公路长度 (米)与时间 (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是()米.
A.504B.432C.324D.720
12.直线y=kx+2过点(1,-2),则k的值是()
A.4B.-4C.-8D.8
11.下列计算正确的是().
A、a2•a3=a6B、y3÷y3=yC、3m+3n=6mnD、(x3)2=x6
12.下列图形中,不是轴对称图形的是( )
13.已知一次函数 的图象如图所示,那么 的取值范围是()
A. B. C. D.
14、、如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由转动,就做成了一个测量工件,则A'B'的长等于内槽宽AB,那么判定△OAB≌△OAB的理由是()
(A)边角边(B)角边角
(C)边边边(D)角角边
15.如图,在长方形 中, 为 的中点,连接 并
延长交 的延长线于点 ,则图中全等的直角三角形共有()
A.3对 B.4对 C.5对 D.6对
16.2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离 (单位:千米)随行驶时间 (单位:小时)变化的函数关系用图象表示正确的是()
二、填一填,看看谁仔细
1.计算:(Π-3.14)O=。
2.如图,△ABC与△A′B′C′关于直线 对称,则∠B的度数为.
3.函数 的自变量 的取值范围是.
4.若单项式 与 是同类项,则 的值是 .
5.分解因式: .
6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为.
7.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是 .
8.如图, 中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=。
9.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为 .
10.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是_______________。
11.一个等腰三角形的一个底角为40°,则它的顶角的度数是.
12.观察下列各式: ; ;
;……
根据前面各式的规律可得到 .
13.计算:-28x4y2÷7x3y=17.若a4•ay=a19,则y=_____________.
14.如图所示,观察规律并填空: .
15.计算:( )2008×(- )2009×(-1)2007=_____________.
16.已知点A(-2,4),则点A关于y轴对称的点的坐标为_____________.
三、解一解,试试谁更棒
17.计算: .18.分解因式: .
19.已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.
20.(4)先化简在求值, ,其中x=-2,y= .
21.2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产 两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产 种购物袋 个,每天共获利 元.
成本(元/个) 售价(元/个)
2 2.3
3 3.5
(1)求出 与 的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少
23.如图,在平面直角坐标系中,函数 的图象 是第一、三象限的角平分线.
实验与探究:由图观察易知A(0,2)关于直线 的对称点 的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线 的对称点 、 的位置,并写出它们的坐标: 、 ;
归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线 的对称点 的坐标为;
22.小丽一家利用元旦三天驾车到某景点旅游。小汽车出发前油箱有油36L,行驶若干小时后,途中在加油站加油若干升。油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示。根据图象回答下列问题:
(1)小汽车行驶________h后加油,中途加油__________L;
(2)求加油前油箱余油量Q与行驶时间t的函数关系式;
(3)如果加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?
请说明理由.
24.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的函数图象.
25. 在平面直角坐标系中的位置如图所示.
(1)作出与 关于 轴对称的 ;
(2)将 向下平移3个单位长度,画出平移后的 .
四、解答题
1.先化简,再求值:
,其中 .
2.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,以△ABC的一边为边画等腰三角形,使它的第三个顶点在△ABC的其它边上.请在图①、图②、图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中表明所画等腰三角形的腰长(不要求尺规作图).
3.两块含30°角的相同直角三角板,按如图位置摆放,使得两条相等的直角边AC、C1A1共线。
(1)问图中有多少对全等三角形?并将他们写出来;
(2)选出其中一对全等三角形进行证明。(△ABC≌△A1B1C1除外)
4.如图,直线 的解析表达式为 ,且 与 轴交于点 ,直线 经过点 ,直线 , 交于点 .(1)求直线 的解析表达式;(2)求 的面积;
5.2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.
(1)哪个队先到达终点?乙队何时追上甲队?
(2)在比赛过程中,甲、乙两队何时相距最远?
26.已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE。
求证:(1)△ABC≌△DEF;
(2)GF=GC。
27.已知:如图, 中, , 于 , 平分 ,且 于 ,与 相交于点 是 边的中点,连结 与 相交于点 .
(1)求证: ;(2)求证: ;
(3) 与 的大小关系如何?试证明你的结论.