一元一次方程的实际应用
方程是刻画现实世界的一个有效的数学模型.中考与竞赛对方程的实际应用的考查将进一步加强,它要求学生具有从实际问题中抽象出数学关系(建模),并用代数式和方程将这种关系表达出来的能力.设未知数是列方程的关键之一,未知数设得合适,就能清楚地体现题目中已知数和未知数的关系,方程的形式相应比较简单,解方程的计算量也较小,反之则不然.设未知数的方法随着具体问题的特点不同而不同,通常有直接设法、间接设法、辅助设法三种.巧设未知数,常常可以取得“化难为易”的效果.
一、 设直接未知数解实际问题
直接设未知数,是指题目问什么就设什么,它多适用于要求的未知数只有一个的情况.
例1、(重庆竞赛题)某人乘船由A顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、C两地的距离为10千米,则A、B两地之间的距离为多少千米?
解:设A、B两地的距离为 千米.
则①若C在A、B之间,可得 .解得
②若C在BA的延长线上,可得 .解得
答A、B两地之间的距离为20千米或 千米.
评注:由于C点位置不确定,所以要分类进行讨论.
二、 设间接未知数解实际问题
设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用.
例2、(江苏竞赛题)汽车以72千米/时的速度笔直的开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是340米/秒,听到回响时,汽车离山谷的距离是多少米?
分析:设鸣笛时汽车离山谷 米,听到回响时汽车又开 ×4=80米,此间声音共行 米,于是有 ×4.
解得 米.所以听到回响时,汽车离山谷640米.
评注:本题若直接设未知数就就难以列出方程.
例3、 如图,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为__________________.
分析:设正方形B、E的边长为 ,则A、C、D的边长为 、 、 .
由题意得 ,解得 .面积为 .
评注:(1)巧妙的设未知数,可起到“柳暗花明又一村”的效果;
(2)不能认为只有应用题才列方程.事实上方程在几何计算中也有广泛的应用.
三、 设辅助未知数解决实际问题
设辅助未知数(又称参数),就是为了使题中的数量关系更加明确.辅助未知数往往不需求出,可以在解题中自动消去(也称”设而不求”).
例4、(缙云杯邀请赛)一客轮逆水行驶.船上一名乘客掉了一件物品浮在水面上,等到乘客发现后,轮船立即掉头去追所掉的物品,已知轮船从掉头到追上这件物品用了5分钟,问乘客是几分钟后发现所掉的物品?
分析:设轮船的速度是 ,水的速度是 ,物品掉入水 分钟后才被发现,依题意有: 整理为: .
评注:本题属行程问题,题中条件只有时间,无法列方程,设了辅助未知数 、 就可以根据路程关系列方程了.
例5、(江苏竞赛题)某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%,10月份将每件冬装的出厂价调低10%(每件冬装的成本不变).销售件数比9月份增加80%.那么该厂10月份销售这种冬装的利润总额比9月份的利润总额增长( )
A.2% B.8% C.40.5% D.62%
分析:设9月份每件冬装的出厂价为 元,则每件的成本为0.75 .10月份每件冬装的利润为(1-10%) -0.75 =0.15 .设9月份销售冬装 件,则10月份销售(1+80%) =1.8 件,所以10月份的利润总额与9月份相比,增加了
评注:本题同时运用了设间接未知数和设辅助未知数两种方法.
四、 运用整体思想解决实际问题
整体思想就是在研究某些实际问题时,往往不是以问题的某个组成部分为着眼点,而是有意识放大考察问题的视角,将要解决的问题看作是一个整体,通过研究问题的整体形式,整体结构或作整体处理后解决问题.
例6、(希望杯竞赛题)设有六位数 乘以3后变为 ,试求 的值.
分析: 分别是五位数 各位上的数字,设五位数 ,由题意得 ,解得 ,所以 .
评注:(1)本题把注意力和着眼点放在问题的整体结构上,把 视为一个整体的元素,整体解决了,作为整体的元素也就迎刃而解.
(2)对于数字组成的数,一般地,一个十进制的 位数 可以表示为 ,其中 均为小于10的非负整数,且 .
例7、(北京迎春杯竞赛题)购买10种货物 ,如果购买件数分别为1、3、4、5、6、7、8、9、10、11件,共需1992元,如果购买件数是1、5、7、9、11、13、15、17、19、21件,则需3000元,那么各买一件共需多少元?
分析:设每件货物的定价依次为 ,则
①
②
① ②得
一元一次方程应用题归类汇集:
(一)行程问题:
1.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
4.在800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于 分钟.
5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?
时钟问题:
10.在6点和7点间,何时时钟分针和时针重合?(教材复习题)
行船问题:
12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
(二)工程问题:
1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?
2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;
(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?
(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?
(3)如果将两管同时打开,每小时的效果如何?如何列式?
(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?
(三)和差倍分问题(生产、做工等各类问题):
1.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。
2.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?
3.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.
(1)如果有人乘出租车行驶了x公里(x>2),那么他应付多少车费?(列代数式,不化简)(8分)
(2)某游客乘出租车从客运中心到三星堆,付了车费10.4元,试估算从客运中心到三星堆大约有多少公里?
比赛积分问题:
10.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。
11.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?
年龄问题:
12.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.
13.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
比例问题:
14.图纸上某零件的长度为32cm,它的实际长度是4cm,那么量得该图纸上另一个零件长度为12cm,求这个零件的实际长度。
15.一时期,日元与人民币的比价为25.2:1,那么日元50万,可以兑换人民币多少元?
16.魏老师到市场去买菜,发现若把10千克的菜放到秤上,指针盘上的指针转了180°.如图,第二天魏老师就给同学们出了两个问题:
(1)如果把0.5千克的菜放在秤上,指针转过多少角度?
(2)如果指针转了540,这些菜有多少千克?
题目呢?