1+1=2为什么?

2024-11-27 18:23:33
推荐回答(6个)
回答1:

没有为什么!

回答2:

如果我们知道 那我们就超越陈景润了...陈景润证出了1+2
看下面
哥德巴赫猜想
我们容易得出:

4=2+2, 6=3+3,8=5+3,
10=7+3,12=7+5,14=11+3,……

那么,是不是所有的大于2的偶数,都可以表示为两个素数的呢?

这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。

哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。

直接证明哥德巴赫猜想不行,人们采取了迂回战术,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题。

1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠"仅一步之遥,在世界数学界引起了轰动。"1+2"也被誉为陈氏定理。

摘自《趣味数学辞典》

回答3:

1+1等于2是因为人为的在数学的领域里规定为等于2,就像现在刚出生的小孩子,姓名都是别人起的,大家都这么叫,以后叫这个名字就是指这个小孩子。如果以前规定1+1等于3或其他什么的,那么现在1+1就不等于2了,而是其他了,1+1等于什么目前用2代替,大家都这么认同,所以现在1+1等于2

回答4:

这个问题世界上还没人能解答出来,我国著名数学家陈景润只是证到了1+2=3而已,已经是代表了世界级最高水准~~~

回答5:

遵循事物的正常规律它等于2,其它可就不一样了,也可能等于1,也可能等于3,,,

回答6:

一个苹果加一个苹果等于?