解:f(x)=1+sin2x+√3(1-cos2x)
=sin2x-√3cos2x+√3+1
=2sin(2x-π/3)+√3+1
1)T=2π/2=π
2)2acosC+c=2b
2sinAcosC+sinC=2sinB=2sin(A+C)=2sinAcosC+2cosAsinC
cosA=1/2
A=π/3
0 -π/3<2B-π/3<π
ymax=2sin(π/2)+√3+1=√3+3
ymin=2sin(-π/3)+√3+1=1
1
(1)
fx=1+根3+sin2x-根3倍cos2x
=1+跟3+2(1/2sin2x+gen3/2cos2x)
=1+gen3+2sin(2x-pai/3)
所以函数最小正周期为2π/2=π
(2)唉我速度慢了点 有人给正解了