∵1≤x²+y²≤2.∴可设x=rcost,y=rsint.(1≤r≤√2,t∈R.).∴原式z=2x²+3xy+2y²=r²[2cos²t+2sin²t+3sintcost]=r²[2+3sintcost]=r²[2+(3/2)sin2t].∵-1≤sin2t≤1.∴1/2≤2+(3/2)sin2t≤7/2.===>r²/2≤r²[2+(3/2)sin2t]≤7r²/2.===>r²/2≤z≤7r²/2.===>1/2≤z≤7.∴原式的值域为[1/2,7].