Sn=n²an
S(n-1)=(n-1)²a(n-1)
Sn-S(n-1)=n²an-(n-1)²a(n-1)
an=n²an-(n-1)²a(n-1)
(n²-1)an=(n-1)²a(n-1)
(n+1)an=(n-1)a(n-1)
an=[(n-1)/(n+1)]×a(n-1)
=[(n-1)/(n+1)]×[(n-2)/n]×a(n-1)
=[(n-1)/(n+1)]×[(n-2)/n]×[(n-3)/(n-1)]×a(n-1)
=[(n-1)/(n+1)]×[(n-2)/n]×[(n-3)/(n-1)]×···×(3/5)×(2/4)×(1/3)×a1
=[2×1/((n+1)n)]×a1
=[2/((n+1)n)]×(1/2)
=1/[n(n+1)]